DOI QR코드

DOI QR Code

Probing the Molecular Orientation of ZnPc on AZO Using Soft X-ray Spectroscopies for Organic Photovoltaic Applications

  • Received : 2015.09.24
  • Accepted : 2015.09.30
  • Published : 2015.09.30

Abstract

The interfacial electronic structure between zinc phthalocyanine (ZnPc) and aluminumdoped zinc oxide (AZO) substrates has been evaluated by ultraviolet photoemission spectroscopy and angle-dependent x-ray absorption spectroscopy to understanding the molecular orientation of a ZnPc layer on the performance of small molecule organic photovoltaics (OPVs). We find that the ZnPc tilt angle improves the ${\pi}-{\pi}$ interaction on the AZO substrate, thus leading to an improved short-circuit current in OPVs based on phthalocyanine. Furthermore, the molecular orientation-dependent energy level alignment has been analyzed in detail using ultraviolet photoemission spectroscopy. We also obtained complete energy level diagrams of ZnPc/AZO and ZnPc/indium thin oxide.

Keywords

References

  1. C.J. Brabec, Sol Energ Mat Sol C, 83, 273 (2004). https://doi.org/10.1016/j.solmat.2004.02.030
  2. S.M. Falke, C.A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, C. Lienau, Science, 344, 1001 (2014). https://doi.org/10.1126/science.1249771
  3. Y. Peng, N. Yaacobi-Gross, A.K. Perumal, H.A. Faber, G. Vourlias, P.A. Patsalas, D.D.C. Bradley, Z.Q. He, T.D. Anthopoulos, Appl. Phys. Lett., 106, 243302 (2015). https://doi.org/10.1063/1.4922758
  4. F. Silvestri, A. Marrocchi, M. Seri, C. Kim, T.J. Marks, A. Facchetti, A. Taticchi, J. Am. Chem. Soc., 132, 6108 (2010). https://doi.org/10.1021/ja910420t
  5. P. Sullivan, A. Duraud, I. Hancox, N. Beaumont, G. Mirri, J.H.R. Tucker, R.A. Hatton, M. Shipman, T.S. Jones, Adv Energy Mater, 1, 352 (2011). https://doi.org/10.1002/aenm.201100036
  6. J.S. Kim, R.H. Friend, I. Grizzi, J.H. Burroughes, Appl. Phys. Lett., 87, 023506 (2005). https://doi.org/10.1063/1.1992658
  7. V. Bhosle, J.T. Prater, F. Yang, D. Burk, S.R. Forrest, J. Narayan, J. Appl. Phys., 102, 023501 (2007). https://doi.org/10.1063/1.2750410
  8. G.B. Murdoch, S. Hinds, E.H. Sargent, S.W. Tsang, L. Mordoukhovski, Z.H. Lu, Appl. Phys. Lett., 94, 213301 (2009). https://doi.org/10.1063/1.3142423
  9. V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Appl. Phys. Lett., 88, 073508 (2006). https://doi.org/10.1063/1.2174093
  10. J.Y. Zou, C.Z. Li, C.Y. Chang, H.L. Yip, A.K.Y. Jen, Adv. Mater., 26, 3618 (2014). https://doi.org/10.1002/adma.201306212
  11. X. Chen, P.A. Glans, X. Qiu, S. Dayal, W.D. Jennings, K.E. Smith, C. Burda, J. Guo, J. Electron. Spectrosc. Relat. Phenom., 162, 67 (2008). https://doi.org/10.1016/j.elspec.2007.09.002
  12. J. Stohr, NEXAFS Spectroscopy, Springer, Berlin, 1992.
  13. W. Chen, D.C. Qi, H. Huang, X.Y. Gao, A.T.S. Wee, Adv. Funct. Mater., 21, 410 (2011). https://doi.org/10.1002/adfm.201000902
  14. K.V. Chauhan, P. Sullivan, J.L. Yang, T.S. Jones, J. Phys. Chem. C, 114, 3304 (2010). https://doi.org/10.1021/jp910601k
  15. P. Sullivan, T.S. Jones, A.J. Ferguson, S. Heutz, Appl. Phys. Lett., 91, 233114 (2007). https://doi.org/10.1063/1.2821229
  16. S.T. Lee, X.Y. Hou, M.G. Mason, C.W. Tang, Appl. Phys. Lett., 72, 1593 (1998). https://doi.org/10.1063/1.121125
  17. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater., 11, 605 (1999). https://doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
  18. W.Y. Gao, A. Kahn, Org. Electron., 3, 53 (2002). https://doi.org/10.1016/S1566-1199(02)00033-2
  19. R. Mitsumoto, K. Seki, T. Araki, E. Ito, Y. Ouchi, Y. Achiba, K. Kikuchi, S. Yajima, S. Kawasaki, F. Okino, H. Touhara, H. Kukrosaki, T. Sonoda, H. Kobayashi, J. Electron. Spectrosc. Relat. Phenom., 78, 453 (1996). https://doi.org/10.1016/S0368-2048(96)80121-6