DOI QR코드

DOI QR Code

Failure Analysis of Filaments of Quadrupole Mass Spectrometer for Plasma Process Monitoring

  • Received : 2015.09.24
  • Accepted : 2015.09.30
  • Published : 2015.09.30

Abstract

A failure analysis of tungsten filaments used in quadrupole mass spectrometer for plasma process monitoring was carried by using SEM and EDS. Failed at high temperature, filaments showed two kinds of failure modes. The one is that diameter of filament became thinner gradually and finally snapped. The other is that filament abruptly snapped almost at a right angle. The EDS analysis showed Fe and C, including W and Fe, on the surface of failed filament. when failed filaments were treated with plasma in mixture of Ar and $CF_4$, the amount of Fe and C decreased. The failure analysis of filament showed that the cause of filament failure is thermal evaporation and grain growth of tungsten at high temperature.

Keywords

References

  1. W. D KLOPP AND P. L. RAFFO, NASA TN D-2503 (1964).
  2. W. D KLOPP AND P. L. RAFFO, NASA TN D-3483 (1966).
  3. Dr. tech. sci. Prof. E. M. Savitskii, Metal Science and Heat Treatment of Metals, 2, 483-486 (1960). https://doi.org/10.1007/BF00649725
  4. A. Gilbert, Journal of the Less-Common Meatls, 10, 328-343 (1966). https://doi.org/10.1016/0022-5088(66)90133-0
  5. Stefan Wurster, Bernd Gludovartz, Reinhard Pippan, Int. Journal of Refractory Metals and Materials, 28, 692-697 (2010). https://doi.org/10.1016/j.ijrmhm.2010.03.002
  6. D. Richard, Photon International 11, 190 (2009).
  7. U. Kroll, A. Shah, H. Keppner, J. Meier, P. Torres, D. Fisher, Sol. Energy Mater. Sol.Cells 48, 343 (1997). https://doi.org/10.1016/S0927-0248(98)80000-7
  8. Y. Sobajima, M. Nishino, T. Fukumori, M. Kurihara, T. Higuchi, S. Nakano, T. Toyama, H. Okamoto, Sol. Energy Mater. Sol. Cells 93, 980 (2009). https://doi.org/10.1016/j.solmat.2008.11.042
  9. T. Matsui, A. Matsuda, M. Kondo, Sol. Energy Mater. Sol. Cells 90, 3199 (2006). https://doi.org/10.1016/j.solmat.2006.06.019
  10. L. Li, Y.M. Li, J.A. Anna Selvan, A.E. Delahoy, R.A. Levy, J. Non-Cryst. Solids 347, 106 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.07.082
  11. B. Rech, T. Roschek, T. Repmann, J. Muller, R. Schmitz, W. Appenzeller, Thin Solid Films 427, 157 (2003). https://doi.org/10.1016/S0040-6090(02)01210-5
  12. A. N. Christensen J. Cryst. Growth 129, 266 (1993). https://doi.org/10.1016/0022-0248(93)90456-7
  13. K. Luey, Metallurgical Transaction, 22A, 2077 (1991).
  14. Jonathan H. Batey, Vacuum, 101, 410-145 (2014). https://doi.org/10.1016/j.vacuum.2013.05.005
  15. Mathew Peet, 4th YEAR M. ENG, University of Sheffield (2008).
  16. Frohnerg and Adam, Thin Solid Films 25, 525-530 (1975). https://doi.org/10.1016/0040-6090(75)90070-X
  17. P. Adam, H. Wever, Surface Science, 21, 307-323 (1970). https://doi.org/10.1016/0039-6028(70)90236-0
  18. J. Lepage, A. Mezin, M. Nivoit, 161, 255-277 (1984).
  19. E.O. Hall Proc. Phys. Soc., 643, 747 (1951).
  20. N. J., J. Iron Steel Inst. 173, 25 (1953).
  21. Inficon CPM training material, Inficon 2011.
  22. Air Liquide Korea, Materials Safety Data Sheet.