References
- A. Baker, Linear forms in the logarithms of algebraic numbers I, Mathematika 13 (1968), 204-216.
- B. Baran, A modular curve of level 9 and the class number one problem, J. Number Theory 129 (2009), no. 3, 715-728. https://doi.org/10.1016/j.jnt.2008.09.013
- B. Baran, Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem, J. Number Theory 130 (2010), no. 12, 2753-2772. https://doi.org/10.1016/j.jnt.2010.06.005
-
D. A. Cox, Primes of the form
$x^2$ +$ny^2$ : Fermat, Class Field, and Complex Multiplication, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. - M. Deuring, Imaginare quadratische Zahlkorper mit der Klassenzahl Eins, Invent. Math. 5 (1968), 169-179. https://doi.org/10.1007/BF01425548
-
D. R. Dorman, Singular moduli, modular polynomials, and the index of the closure of
${\mathbb{Z}}[j({\tau})]$ in${\mathbb{Q}}(j({\tau}))$ , Math. Ann. 283 (1989), no. 2, 177-191. https://doi.org/10.1007/BF01446429 - A. Gee, Class invariants by Shimura's reciprocity law, J. Theor. Nombres Bordeaux 11 (1999), no. 1, 45-72. https://doi.org/10.5802/jtnb.238
- B. H. Gross and D. B. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191-220.
- K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253. https://doi.org/10.1007/BF01174749
- G. J. Janusz, Algebraic Number Fields, 2nd edition, Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R. I., 1996.
- J. K. Koo and D. H. Shin, On some arithmetic properties of Siegel functions, Math. Z. 264 (2010), no. 1, 137-177. https://doi.org/10.1007/s00209-008-0456-9
- D. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, New York-Berlin, 1981.
- E. Landau, Uber die Klassenzahl der binaren quadratischen Formen von negativer Discriminante, Math. Ann. 56 (1903), no. 4, 671-676. https://doi.org/10.1007/BF01444311
- S. Lang, Introduction to Modular Forms, Grundlehren der mathematischen Wissenschaften, No. 222, Springer-Verlag, Berlin-New York, 1976.
- S. Lang, Elliptic Functions, 2nd edn, Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.
- S. Lang, Algebraic Number Theory, 2nd edn, Spinger-Verlag, New York, 1994.
- K. Ramachandra, Some applications of Kronecker's limit formula, Ann. of Math. (2) 80 (1964), 104-148. https://doi.org/10.2307/1970494
- P. Ribenboim, Classical Theory of Algebraic Numbers, Universitext, Springer-Verlag, New York, 2001.
-
R. Schertz, Die singularen Werte der Weberschen Funktionen f,
$f_1$ ,$f_2$ ,${\gamma}_2$ ,${\gamma}_2$ , J. Reine Angew. Math. 286/287 (1976), 46-74. - R. Schertz, Construction of ray class fields by elliptic units, J. Theor. Nombres Bordeaux 9 (1997), no. 2, 383-394. https://doi.org/10.5802/jtnb.209
- R. Schertz, Weber's class invariants revisited, J. Theor. Nombres Bordeaux 14 (2002), no. 1, 325-343. https://doi.org/10.5802/jtnb.361
- J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects of Mathematics, E15, Vieweg & Sohn, Braunschweig, 1989.
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N. J., 1971.
- H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27. https://doi.org/10.1307/mmj/1028999653
- H. M. Stark, On the "gap" in a theorem of Heegner, J. Number Theory 1 (1969), 16-27. https://doi.org/10.1016/0022-314X(69)90023-7
- P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class Field Theory-Its Centenary and Prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001.
- H. Weber, Lehrbuch der Algebra. Vol. III, 2nd edn, Vieweg, Braunschwieg, 1908. (Reprint by Chelsea, New York, 1961.)