DOI QR코드

DOI QR Code

GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS

  • SHIN, DONG HWA (Department of Mathematics Hankuk University of Foreign Studies)
  • Received : 2014.10.18
  • Published : 2015.09.01

Abstract

We show in many cases that the Siegel-Ramachandra invariants generate the ray class fields over imaginary quadratic fields. As its application we revisit the class number one problem done by Heegner and Stark, and present a new proof by making use of inequality argument together with Shimura's reciprocity law.

Keywords

References

  1. A. Baker, Linear forms in the logarithms of algebraic numbers I, Mathematika 13 (1968), 204-216.
  2. B. Baran, A modular curve of level 9 and the class number one problem, J. Number Theory 129 (2009), no. 3, 715-728. https://doi.org/10.1016/j.jnt.2008.09.013
  3. B. Baran, Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem, J. Number Theory 130 (2010), no. 12, 2753-2772. https://doi.org/10.1016/j.jnt.2010.06.005
  4. D. A. Cox, Primes of the form $x^2$ + $ny^2$ : Fermat, Class Field, and Complex Multiplication, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989.
  5. M. Deuring, Imaginare quadratische Zahlkorper mit der Klassenzahl Eins, Invent. Math. 5 (1968), 169-179. https://doi.org/10.1007/BF01425548
  6. D. R. Dorman, Singular moduli, modular polynomials, and the index of the closure of ${\mathbb{Z}}[j({\tau})]$ in ${\mathbb{Q}}(j({\tau}))$, Math. Ann. 283 (1989), no. 2, 177-191. https://doi.org/10.1007/BF01446429
  7. A. Gee, Class invariants by Shimura's reciprocity law, J. Theor. Nombres Bordeaux 11 (1999), no. 1, 45-72. https://doi.org/10.5802/jtnb.238
  8. B. H. Gross and D. B. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191-220.
  9. K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253. https://doi.org/10.1007/BF01174749
  10. G. J. Janusz, Algebraic Number Fields, 2nd edition, Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R. I., 1996.
  11. J. K. Koo and D. H. Shin, On some arithmetic properties of Siegel functions, Math. Z. 264 (2010), no. 1, 137-177. https://doi.org/10.1007/s00209-008-0456-9
  12. D. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, New York-Berlin, 1981.
  13. E. Landau, Uber die Klassenzahl der binaren quadratischen Formen von negativer Discriminante, Math. Ann. 56 (1903), no. 4, 671-676. https://doi.org/10.1007/BF01444311
  14. S. Lang, Introduction to Modular Forms, Grundlehren der mathematischen Wissenschaften, No. 222, Springer-Verlag, Berlin-New York, 1976.
  15. S. Lang, Elliptic Functions, 2nd edn, Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.
  16. S. Lang, Algebraic Number Theory, 2nd edn, Spinger-Verlag, New York, 1994.
  17. K. Ramachandra, Some applications of Kronecker's limit formula, Ann. of Math. (2) 80 (1964), 104-148. https://doi.org/10.2307/1970494
  18. P. Ribenboim, Classical Theory of Algebraic Numbers, Universitext, Springer-Verlag, New York, 2001.
  19. R. Schertz, Die singularen Werte der Weberschen Funktionen f, $f_1$, $f_2$, ${\gamma}_2$, ${\gamma}_2$, J. Reine Angew. Math. 286/287 (1976), 46-74.
  20. R. Schertz, Construction of ray class fields by elliptic units, J. Theor. Nombres Bordeaux 9 (1997), no. 2, 383-394. https://doi.org/10.5802/jtnb.209
  21. R. Schertz, Weber's class invariants revisited, J. Theor. Nombres Bordeaux 14 (2002), no. 1, 325-343. https://doi.org/10.5802/jtnb.361
  22. J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects of Mathematics, E15, Vieweg & Sohn, Braunschweig, 1989.
  23. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N. J., 1971.
  24. H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27. https://doi.org/10.1307/mmj/1028999653
  25. H. M. Stark, On the "gap" in a theorem of Heegner, J. Number Theory 1 (1969), 16-27. https://doi.org/10.1016/0022-314X(69)90023-7
  26. P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class Field Theory-Its Centenary and Prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001.
  27. H. Weber, Lehrbuch der Algebra. Vol. III, 2nd edn, Vieweg, Braunschwieg, 1908. (Reprint by Chelsea, New York, 1961.)