DOI QR코드

DOI QR Code

POSTPROCESSING FOR GUARANTEED ERROR BOUND BASED ON EQUILIBRATED FLUXES

  • Received : 2014.10.17
  • Accepted : 2015.03.10
  • Published : 2015.09.01

Abstract

In this work we analyze a postprocessing scheme for improving the guaranteed error bound based on the equilibrated fluxes for the P1 conforming FEM. The improved error bound is shown to be asymptotically exact under suitable conditions on the triangulations and the regularity of the true solution. We also present some numerical results to illustrate the effect of the postprocessing scheme.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M. Ainsworth, A framework for obtaining guaranteed error bounds for finite element approximations, J. Comput. Appl. Math. 234 (2010), no. 9, 2618-2632. https://doi.org/10.1016/j.cam.2010.01.037
  2. M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York, 2000.
  3. I. Babuska and T. Strouboulis, The Finite Element Method and Its Reliability, Oxford University Press, New York, 2001.
  4. R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. I. grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294-2312. https://doi.org/10.1137/S003614290139874X
  5. R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. II. general unstructured grids, SIAM J. Numer. Anal. 41 (2003), no. 6, 2313-2332. https://doi.org/10.1137/S0036142901398751
  6. F. A. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), no. 3, 1188-1204 https://doi.org/10.1137/0733059
  7. D. Braess and J. Schoberl, Equilibrated residual error estimator for edge elements, Math. Comp. 77 (2008), no. 262, 651-672. https://doi.org/10.1090/S0025-5718-07-02080-7
  8. C. Carstensen and C. Merdon, Effective postprocessing for equilibration a posteriori error estimators, Numer. Math. 123 (2013), no. 3, 425-459. https://doi.org/10.1007/s00211-012-0494-4
  9. P. Deuflhard, P. Leinen, and H. Yserentant, Concepts of an adaptive hierarchical finite element code, Impact Comput. Sci. Engrg. 1 (1989), no. 1, 3-35. https://doi.org/10.1016/0899-8248(89)90018-9
  10. P. Destuynder and B. Metivet, Explicit error bounds in a conforming finite element method, Math. Comp. 68 (1999), no. 228, 1379-1396. https://doi.org/10.1090/S0025-5718-99-01093-5
  11. L. Du and N. Yan, Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes, Adv. Comput. Math. 14 (2001), no. 2, 175-193. https://doi.org/10.1023/A:1016676917360
  12. R. Duran, M. A. Muschietti, and R. Rodriguez, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math. 59 (1991), no. 2, 107-127. https://doi.org/10.1007/BF01385773
  13. R. Duran and R. Rodriguez, On the asymptotic exactness of Bank-Weiser's estimator, Numer. Math. 62 (1992), no. 3, 297-303. https://doi.org/10.1007/BF01396231
  14. P. Ladeveze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), no. 3, 485-509. https://doi.org/10.1137/0720033
  15. B. Li and Z. Zhang, Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods Partial Differential Equations 15 (1999), no. 2, 151-167. https://doi.org/10.1002/(SICI)1098-2426(199903)15:2<151::AID-NUM2>3.0.CO;2-O
  16. R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal. 42 (2004), no. 4, 1394-1414. https://doi.org/10.1137/S0036142903433790
  17. A. Maxim, Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method, Numer. Math. 106 (2007), no. 2, 225-253. https://doi.org/10.1007/s00211-007-0064-3
  18. J. S. Ovall, Function, gradient, and Hessian recovery using quadratic edge-bump functions, SIAM J. Numer. Anal. 45 (2007), no. 3, 1064-1080. https://doi.org/10.1137/060648908
  19. S. Repin, S. Sauter, and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions, J. Comput. Appl. Math. 164/165 (2004), 601-612. https://doi.org/10.1016/S0377-0427(03)00491-6
  20. T. Vejchodsky, Guaranteed and locally computable a posteriori error estimate, IMA J. Numer. Anal. 26 (2006), no. 3, 525-540. https://doi.org/10.1093/imanum/dri043
  21. M. Vohralik, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput. 46 (2011), no. 3, 397-438. https://doi.org/10.1007/s10915-010-9410-1
  22. J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp. 73 (2004), no. 247, 1139-1152. https://doi.org/10.1090/S0025-5718-03-01600-4
  23. N. Yan and A. Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 32-33, 4289-4299. https://doi.org/10.1016/S0045-7825(00)00319-4