Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- M. Ainsworth, A framework for obtaining guaranteed error bounds for finite element approximations, J. Comput. Appl. Math. 234 (2010), no. 9, 2618-2632. https://doi.org/10.1016/j.cam.2010.01.037
- M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York, 2000.
- I. Babuska and T. Strouboulis, The Finite Element Method and Its Reliability, Oxford University Press, New York, 2001.
- R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. I. grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294-2312. https://doi.org/10.1137/S003614290139874X
- R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. II. general unstructured grids, SIAM J. Numer. Anal. 41 (2003), no. 6, 2313-2332. https://doi.org/10.1137/S0036142901398751
- F. A. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), no. 3, 1188-1204 https://doi.org/10.1137/0733059
- D. Braess and J. Schoberl, Equilibrated residual error estimator for edge elements, Math. Comp. 77 (2008), no. 262, 651-672. https://doi.org/10.1090/S0025-5718-07-02080-7
- C. Carstensen and C. Merdon, Effective postprocessing for equilibration a posteriori error estimators, Numer. Math. 123 (2013), no. 3, 425-459. https://doi.org/10.1007/s00211-012-0494-4
- P. Deuflhard, P. Leinen, and H. Yserentant, Concepts of an adaptive hierarchical finite element code, Impact Comput. Sci. Engrg. 1 (1989), no. 1, 3-35. https://doi.org/10.1016/0899-8248(89)90018-9
- P. Destuynder and B. Metivet, Explicit error bounds in a conforming finite element method, Math. Comp. 68 (1999), no. 228, 1379-1396. https://doi.org/10.1090/S0025-5718-99-01093-5
- L. Du and N. Yan, Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes, Adv. Comput. Math. 14 (2001), no. 2, 175-193. https://doi.org/10.1023/A:1016676917360
- R. Duran, M. A. Muschietti, and R. Rodriguez, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math. 59 (1991), no. 2, 107-127. https://doi.org/10.1007/BF01385773
- R. Duran and R. Rodriguez, On the asymptotic exactness of Bank-Weiser's estimator, Numer. Math. 62 (1992), no. 3, 297-303. https://doi.org/10.1007/BF01396231
- P. Ladeveze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), no. 3, 485-509. https://doi.org/10.1137/0720033
- B. Li and Z. Zhang, Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods Partial Differential Equations 15 (1999), no. 2, 151-167. https://doi.org/10.1002/(SICI)1098-2426(199903)15:2<151::AID-NUM2>3.0.CO;2-O
- R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal. 42 (2004), no. 4, 1394-1414. https://doi.org/10.1137/S0036142903433790
- A. Maxim, Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method, Numer. Math. 106 (2007), no. 2, 225-253. https://doi.org/10.1007/s00211-007-0064-3
- J. S. Ovall, Function, gradient, and Hessian recovery using quadratic edge-bump functions, SIAM J. Numer. Anal. 45 (2007), no. 3, 1064-1080. https://doi.org/10.1137/060648908
- S. Repin, S. Sauter, and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions, J. Comput. Appl. Math. 164/165 (2004), 601-612. https://doi.org/10.1016/S0377-0427(03)00491-6
- T. Vejchodsky, Guaranteed and locally computable a posteriori error estimate, IMA J. Numer. Anal. 26 (2006), no. 3, 525-540. https://doi.org/10.1093/imanum/dri043
- M. Vohralik, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput. 46 (2011), no. 3, 397-438. https://doi.org/10.1007/s10915-010-9410-1
- J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp. 73 (2004), no. 247, 1139-1152. https://doi.org/10.1090/S0025-5718-03-01600-4
- N. Yan and A. Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 32-33, 4289-4299. https://doi.org/10.1016/S0045-7825(00)00319-4