DOI QR코드

DOI QR Code

SOME POLYNOMIAL INVARIANTS OF WELDED LINKS

  • IM, YOUNG HO (Department of Mathematics Pusan National University) ;
  • LEE, KYEONGHUI (Department of Mathematics Pusan National University) ;
  • SHIN, MI HWA (Department of Mathematics Graduate School of Natural Sciences Pusan National University)
  • Received : 2014.10.23
  • Published : 2015.09.01

Abstract

We give a quotient of the ring ${\mathbb{Q}}[A^{{\pm}1},\;t^{{\pm}1]$ so that the Miyazawa polynomial is a non-trivial invariant of welded links. Furthermore we show that this is also an invariant under the other forbidden move $F_u$, and so it is a fused isotopy invariant. Also, we give some quotient ring so that the index polynomial can be an invariant for welded links.

Keywords

References

  1. A. Fish and E. Keyman, Jones polynomial invariants, J. Knot Theory Ramifications 15 (2006), no. 3, 339-350. https://doi.org/10.1142/S0218216506004518
  2. R. Fenn, R. Rimanyi, and C. Rourke, The braid-permutation group, Topology 36 (1997), no. 1, 123-135. https://doi.org/10.1016/0040-9383(95)00072-0
  3. M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and virtual knots, Topology 39 (2000), no. 5, 1045-1068. https://doi.org/10.1016/S0040-9383(99)00054-3
  4. Y. H. Im, K. Lee, and S. Y. Lee, Index polynomial invariant of virtual links, J. Knot Theory Ramifications 19 (2010), no. 5, 709-725. https://doi.org/10.1142/S0218216510008042
  5. Y. H. Im and K. I. Park, A parity and a multi-variable polynomial invariant for virtual links, J. Knot Theory Ramifications 22 (2013), no. 13, 1350073, 18 pp.
  6. Y. H. Im, K. I. Park, and M. H. Shin, Parities and polynomial invariats for virtual links, preprint.
  7. S. Kamada, Braid presentation of virtual knots and welded knots, Osaka J. Math. 44 (2007), no. 2, 441-458.
  8. N. Kamada and S. Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000), no. 1, 93-106. https://doi.org/10.1142/S0218216500000049
  9. N. Kamada and Y. Miyazawa, A 2-variable polynomial invariant for a virtual link derived from magnetic graphs, Hiroshima Math. J. 35 (2005), no. 2, 309-326.
  10. T. Kanenobu, Forbidden moves unknot a virtual knot, J. Knot Theory Ramifications 10 (2001), no. 1, 89-96. https://doi.org/10.1142/S0218216501000731
  11. L. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663-690. https://doi.org/10.1006/eujc.1999.0314
  12. Y. Miyazawa, Magnetic graphs and an invariant for virtual links, J. Knot Theory Ramifications 15 (2006), no. 10, 1319-1334. https://doi.org/10.1142/S0218216506005135
  13. S. Nelson, Unknotting virtual knots with Guass diagram forbidden moves, J. Knot Theory Ramifications 10 (2001), no. 6, 931-935. https://doi.org/10.1142/S0218216501001244
  14. S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), no. 4, 531-542.
  15. B. Winter, The classification of spun torus knots, J. Knot Theory Ramifications 9 (2009), no. 9, 1287-1298.