DOI QR코드

DOI QR Code

열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property

  • Hong, M.-H. (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Ch.-S. (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, H.-H. (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2015.03.16
  • 심사 : 2015.06.26
  • 발행 : 2015.06.30

초록

낮은 열전도도 및 높은 비표면적 특성으로 흡착제 및 가스센서 등 여러 응용 분야로 연구되고 있는 규칙적 메조기공 세라믹 소재는 폐기공 메조기공 구조와 개기공 메조기공 구조로 나뉜다. 이중 폐기공 메조기공 세라믹 소재는 개기공 메조기공 세라믹 소재보다 높은 기계적 특성을 가짐에도 내부에 존재하는 기공을 이용한 비표면적 증가에 한계가 있어 응용에 제약을 가지고 있다. 본 연구팀은 규칙적 폐기공 메조기공 타이타니아($TiO_2$)의 열처리 시간 변화에 따른 입자성장으로부터 폐기공 연결의 도입을 통하여 비표면적을 변화시키는 연구를 수행하고자 하였다. 열처리 시간 증가시 타이타니아 결정상의 변화는 없었으며 입자성장이 일어나게 되면서 기공구조의 무너짐 및 기공의 연결성 증가를 확인할 수 있었다. 24시간 열처리 시료의 경우, 기공률은 36.3%에 34.1%로 감소하였으나 기공의 연결도 증가로 인해 비표면적은 $48m^2/g$에서 $156m^2/g$으로 증가하였다. 이러한 비표면적의 증가는 CO 가스의 감응도 측정을 통하여 감응도가 약 7.4배 증가하는 것으로부터 확인될 수 있었다.

Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

키워드

참고문헌

  1. G. J. de A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, "Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures", Chem. Rev., 102, 4093 (2002). https://doi.org/10.1021/cr0200062
  2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism", Nature, 359, 710 (1992). https://doi.org/10.1038/359710a0
  3. C. Misra, "Industrial Alumina Catalysts, ACS Monograph Series, vol. 184", pp. 133-136, American Chemical Society, Washington, DC (1986).
  4. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, "Generalized syntheses of large-pore mesoporous metal oxides with semi crystalline frameworks", Nature, 396, 152 (1998). https://doi.org/10.1038/24132
  5. G.-B. Kang, S.-M. Kim, S.-I. Kim, Y.-T. Kim, and J.-H. Park, "Fabrication of Nanopatterned Oxide Layer on GaAs Substrate by using Block Copolymer and Reactive Ion Etching", J. Microelectron. Packag. Soc., 16(4), 29 (2009).
  6. G.-B. Kang, S.-I. Kim, Y.-H. Kim, M.-C. Park, Y.-T. Kim, and C.-W. Lee, "Fabrication of Si Nano Dots by Using Diblock Copolymer Thin Film", J. Microelectron. Packag. Soc., 14(2), 17 (2007).
  7. Ch.-S Park, U. K. H. Bangi, and H.-H. Park, "Effect of Sulfur Dopants on the Porous Structure and Electrical Properties of Mesoporous $TiO_2$ Thin Films", Mater. Lett., 106, 401 (2013). https://doi.org/10.1016/j.matlet.2013.05.091
  8. Ch.-S. Park, M.-H. Hong, and H.-H. Park, "Effect of Annealing Temperature on the Structural and Electrical Properties of Mesoporous $La_{0.7}Sr_{0.3}MnO_3$", J. Ceram. Soc. Jpn., 122, 608 (2014). https://doi.org/10.2109/jcersj2.122.608
  9. T.-J. Ha, M.-H. Hong, Ch.-S. Park, and H.-H. Park, "Gas Sensing Properties of Ordered Mesoporous $TiO_2$ Film Enhanced by Thermal Shock Induced Cracking", Sens. Actuator B-Chem., 181, 874 (2013). https://doi.org/10.1016/j.snb.2013.02.093
  10. Z.-Y. Yuan, T.-Z. Ren, A. Vantomme, and B.-L. Su, "Facile and Generalized Preparation of Hierarchically Mesoporous-Macroporous Binary Metal Oxide Materials", Chem. Mater., 16, 5096 (2004). https://doi.org/10.1021/cm0494812
  11. E. Sotter, X. Vilanova, E. Llobet, M. Stankova, and X. Correig, "Niobium-Doped Titania Nano powders for Gas Sensor Applications", J. Optoelectron. Adv. Mater., 7, 1395 (2005).
  12. W. Ostwald, Lehrbuch der allgemeinen chemie, Vol. 2, Part 1. Leipzig, Germany (1896).
  13. M. R. Baklanov and K. P. Mogilnikov, "Non-destructive characterisation of porous low-k dielectric films", Microelectron. Eng., 64, 335 (2002). https://doi.org/10.1016/S0167-9317(02)00807-9
  14. P. Xu, J. Yang, T. Qiu, and X. Chen, "Effect of annealing on microstructure and properties of $Si_3N_4$-AlN composite ceramics", J. Cent. South Univ. Technol., 18, 960 (2011). https://doi.org/10.1007/s11771-011-0787-2
  15. S.-B. Jung, T.-J. Ha and H.-H. Park, "Investigation of the properties of organically modified ordered mesoporous silica films", J. Colloid Interface Sci., 320, 527 (2008). https://doi.org/10.1016/j.jcis.2008.01.003
  16. Patterson, A. L., "The Scherrer Formula for X-Ray Particle Size Determination", Physical review, 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978
  17. T.-J. Ha, H.-H. Park, E. S. Kang, S. Shin, and H. H. Cho, "Variations in mechanical and thermal properties of mesoporous alumina thin films due to porosity and ordered pore structure", J. Colloid Interface Sci., 345, 120 (2010). https://doi.org/10.1016/j.jcis.2010.01.028
  18. T.-J. Ha, H.-G. Im, S.-J. Yoon, H. W. Jang, and H.-H. Park, "Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants", J. Nanomater., 2011, 326472 (2011).
  19. H. Abrams, "Grain size measurement by the intercept method", Metallography, 4(1), 59 (1971). https://doi.org/10.1016/0026-0800(71)90005-X
  20. A. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, and J.-P. Jolivet, "Size tailoring of $TiO_2$ anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy", J. Mater. Chem., 4, 877 (2003).
  21. J. A. Cartwright and L. Lonergan, "Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems", Basin Res., 8, 183 (1996). https://doi.org/10.1046/j.1365-2117.1996.01536.x
  22. W. H. Liu, X. M. Zhang, J. G. Tang, and Y. X. Du, "Simulation of void growth and coalescence behavior with 3D crystal plasticity", Comput. Mater. Sci., 40, 130 (2007). https://doi.org/10.1016/j.commatsci.2006.11.009
  23. N. Savage, B. Chwieroth, A. Ginwalla, B. R. Patton, S. A. Akbar, and P. K. Dutta, "Composite n-p semiconducting titanium oxides as gas sensors", Sens. Actuator B-Chem., 79, 17-27 (2001). https://doi.org/10.1016/S0925-4005(01)00843-7

피인용 문헌

  1. Thermoelectric behaviors of ZnO mesoporous thin films affected by strain induced from the different dopants radii (Al, Ga, and In) vol.119, pp.19, 2015, https://doi.org/10.1063/5.0063497