DOI QR코드

DOI QR Code

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin (Center for Non-crystalline Materials, Yonsei University) ;
  • Kim, Won Tae (Department of Laser & Optical Information Engineering, Cheongju University)
  • 투고 : 2015.06.17
  • 심사 : 2015.06.24
  • 발행 : 2015.06.30

초록

Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

키워드

참고문헌

  1. Abdelijawad F, Fontus M, and Haataja M (2011) Ductility of bulk metallic glass composites: microstructural effects. Appl. Phys. Lett. 98, 031909. https://doi.org/10.1063/1.3531660
  2. Ashby M F and Greer A L (2006) Metallic glasses as structural materials. Scr. Mater. 54, 321-326. https://doi.org/10.1016/j.scriptamat.2005.09.051
  3. Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, and Eckert J (2005) "Work-hardenable" ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501. https://doi.org/10.1103/PhysRevLett.94.205501
  4. Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, and Ritchie R O (2011) A damage-tolerant glass. Nature Mater. 10, 123-128. https://doi.org/10.1038/nmat2930
  5. Falk M L and Langer J S (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192-7205. https://doi.org/10.1103/PhysRevE.57.7192
  6. Fu X L, Li Y, and Schuh C A (2007) Mechanical properties of metallic glass matrix composite: effect of reinforcement character and connectivity. Scr. Mater. 56, 617-620. https://doi.org/10.1016/j.scriptamat.2006.12.010
  7. Greaves G N, Greer A L, Lakes R S, and Rouxel T (2011) Poisson's ratio and modern materials. Nature Mater. 10, 823-837. https://doi.org/10.1038/nmat3134
  8. Hays C C, Kim C P, and Johnson W L (2000) Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phy. Rev. Letters 84, 2901-2904. https://doi.org/10.1103/PhysRevLett.84.2901
  9. Hofmann D C, Suh J-Y, Wiest A, Duan G, Lind M-L, Demetriou M D, and Johnson W L (2008) Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085-1089. https://doi.org/10.1038/nature06598
  10. Inoue A, Zhang W, Tsurui T, Yavari A R, and Greer A L (2005) Unusual room-temperature compressive plasticity in nanocrystaltoughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221-229. https://doi.org/10.1080/09500830500197724
  11. Kim C P, Oh Y S, Lee S, and Kim N J (2011) Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation. Scr. Mater. 65, 304-307. https://doi.org/10.1016/j.scriptamat.2011.04.037
  12. Kim Y C, Na J H, Park J M, Kim D H, Lee J K, and Kim W T (2003) Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093-3095. https://doi.org/10.1063/1.1616198
  13. Lewandowki J J, Wang W H, and Greer A L (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77-87. https://doi.org/10.1080/09500830500080474
  14. Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, and Wang W H (2007) Super plastic bulk metallic glasses at room temperature. Science 315, 1385-1388. https://doi.org/10.1126/science.1136726
  15. Liu Z, Chan K C, and Liu L (2013), Effect of alloying elements with positive heat of mixing on the free volume and compressive plasticity in ZrCoCuAl bulk metallic glasses. Mater. Trans. 54, 2209-2214. https://doi.org/10.2320/matertrans.M2013241
  16. Lund A C and Schuh C A (2003) Yield surface of a simulated metallic glass. Acta Mater 51, 5399-5411. https://doi.org/10.1016/S1359-6454(03)00396-3
  17. Nishiyama N, Takenaka N, Miura H, Saidoh N, Zeng Y, and Inoue A (2013) The world's biggest glassy alloy ever made. Intermetallics 30, 19-24.
  18. Ott R T, Sansoz F, Molinari J F, Almer J, Ramesh K T, and Hufnagel T C (2005) Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling. Acta Mater. 53, 1883-1893. https://doi.org/10.1016/j.actamat.2004.12.037
  19. Park E S, Kim D H, Ohkubo T, and Hono K (2005a) Enhancement of glass forming ability and plasticity by addition of Nb in Cu-Ti-Zr-Ni-Si bulk metallic glasses. J. Non-cryst. Solid 351, 1232-1238. https://doi.org/10.1016/j.jnoncrysol.2005.02.019
  20. Park J M, Park J S, Kim J-H, Lee M H, Kim W T, and Kim D H (2005b) Ti-based bulk metallic glass with high cold workability at room temperature. Mater. Sci. Forum 475-479, 3431-3434.
  21. Poon S J, Zhu A, and Shiflet G J (2008) Poisson's ratio and intrinsic plasticity of metallic glasses. Appl. Phys. Lett. 92, 261902. https://doi.org/10.1063/1.2952827
  22. Qiao J W, Sun A C, Huang E W, Zhang Y, Liaw P K, and Chuang C P (2011) Tensile deformation micromechanisms for bulk metallic glass matrix composites: from work-hardening to softening. Acta Mater. 59, 4126-4137. https://doi.org/10.1016/j.actamat.2011.03.036
  23. Rim K R, Park J M, Kim W T, and Kim D H (2013) Tensile necking and enhanced plasticity of cold rolled b-Ti dendrite reinforced Ti-based bulk metallic glass matrix composite. J. Alloys Comp. 579, 253-258. https://doi.org/10.1016/j.jallcom.2013.06.011
  24. Schroers J and Johnson W L (2004) Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506. https://doi.org/10.1103/PhysRevLett.93.255506
  25. Spaepen F (1976) A microscopic mechanism for strady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407-415.
  26. Wang Q, Yang Y, Jiang H, Liu C T, Ruan H H, and Lu J (2014) The atomicscale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions. Sci. Rep. 4, 04648.
  27. Yokoyama Y (2003) Ductility improvement of Zr-Cu-Ni-Al glassy alloy. J. Non-cryst. Solids 316, 104-113. https://doi.org/10.1016/S0022-3093(02)01942-7
  28. Yokoyama Y, Fujita K, Yavari A R, and Inoue A (2009) Malleable hypoeutectic Zr-Ni-Cu-Al bulk glassy alloys with tensile plastic elongation at room temperature. Phil. Mag. Lett. 89, 322-334. https://doi.org/10.1080/09500830902873575
  29. Zhang T, Inoue A, and Masumoto T (1991) Amorphous Zr-Al-TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans., JIM 32, 1005-1010. https://doi.org/10.2320/matertrans1989.32.1005