DOI QR코드

DOI QR Code

Environmental features of the distribution areas and climate sensitivity assesment of Korean Fir and Khinghan Fir

구상나무와 분비나무분포지의 환경 특성 및 기후변화 민감성 평가

  • Park, Hyun-Chul (Department of Landscape Architecture, Graduate School, Kangwon National University) ;
  • Lee, Jung-Hwan (Institute of Environmental at Kangwon National University) ;
  • Lee, Gwan-Gyu (Department of Landscape Architecture, Kangwon National University) ;
  • Um, Gi-Jeung (Climate Change Research Institute of Korea)
  • Received : 2015.02.20
  • Accepted : 2015.05.19
  • Published : 2015.06.30

Abstract

The object of this study was the climate change sensitivity assessment of Korean Fir and Khinghan Fir as a representative subalpine plant in South Korea. Using species distribution models, we predicted the probability of current and future species distribution. According to this study, potential distribution that have been predicted based on the threshold (MTSS) is, Khinghan Fir was higher loss rate than Korean Fir. And in the climate change sensitivity assessment using the scalar sensitivity weight ($W_{is}$), $W_{is}$ of Korean Fir was higher relatively than the sensitivity of Khinghan Fir. When using the species distribution models as shown in this study may vary depending on the probability of presence data and spatial variables. Therefore should be prior decision studies on the ecological environment of the study species. Based on this study, if it is domestic applicable climate change sensitivity assessment method is developed. it would be important decision-making to climate change and biological diversity of adaptation policy.

본 연구는 대표적인 아고산식물인 동일속 식물 구상나무와 분비나무의 기후변화 민감성 평가에 목적이 있다. 이를 위해 종 분포 모형을 이용하여 현재 및 미래의 종 분포 확률을 예측하였고 기후변화 민감성 평가를 하였다. MTSS를 기준으로 예측된 잠재 분포지는 분비나무가 구상나무보다 감소율이 많았으며, 스칼라 민감도를 이용한 평가에서는 구상나무의 민감도가 분비나무보다 높았다. 본 연구와 같은 종 분포 모형을 이용한 연구에서는 위치자료 및 환경변수에 따라 종 분포 확률이 달라질 수 있으므로 연구 대상종의 생태 환경에 대한 면밀한 조사가 선결되어야 하며, 본 연구를 기초로 하여 국내에 적용 가능한 기후변화민감성 평가 방법이 개발된다면 기후변화와 생물 다양성 적응 정책의 중요한 의사결정 수단이 될 것으로 기대한다.

Keywords

References

  1. 국립환경과학원. 2007a. 백두대간 보호지역 생태계 조사(육십령-지리산).(NIER. 2007a. Ecosystem survey of Baekdudaegan Protected Area(Yuksipryeong-Jirisan).)
  2. 국립환경과학원. 2007b. 백두대간 보호지역 생태계 조사(속리산형제봉-지리산).(NIER. 2007b. Ecosystem survey of Baekdudaegan Protected Area(Songnisan-Jirisan).)
  3. 국립환경과학원. 2008. 백두대간 보호지역 생태계 조사(삼척댓재-속리산 형제봉).(NIER. 2008. Ecosystem survey of Baekdudaegan Protected Area(Daetjae-Songnisan).)
  4. 국립환경과학원. 2009. 백두대간 보호지역 생태계 조사(오대산진고개-삼척댓재).(NIER. 2009. Ecosystem survey of Baekdudaegan Protected Area(Odaesan-Daetjae).)
  5. 국립환경과학원. 2010. 백두대간 보호지역 생태계 조사(고성향로봉-오대산진고개).(NIER. 2010. Ecosystem survey of Baekdudaegan Protected Area(Hyangrobong-Odaesan).)
  6. 공우석. 1998. 한라산 고산식물의 분포 특성, 대한지리학회지, 33, 191-208.(Kong WS. 1998. The Distributional Patterns of Alpine Plants of Mt. Halla, Cheju Island, Korea, Journal of the Korean Geographical Society, 33, 191-208.)
  7. 공우석. 1999. 한라산의 수직적 기온 분포와 고산식물의 온도적 범위, 대한지리학회지, 34, 385-393.(Kong WS. 1999. The Vertical Distribution on Air Temperature and Thermal Amplitude of Alpine Plants on Mt. Halla, Cheju Island, Korea, Journal of the Korean Geographical Society, 34, 385-393.)
  8. 공우석. 2002. 한반도 고산식물의 구성과 분포, 대한지리학회지, 37, 357-370.(Kong WS. 2002. Species composition and distribution of Korean alpine plants, Journal of the Korean Geographical Society, 37, 357-370.)
  9. 공우석. 2006. 한반도에 자생하는 소나무과 나무의 생물지리, 대한지리학회, 41(1), 73-93.(Kong WS. 2006. Biogeography of native Korean Pinaceae, Journal of the Korean Geographical Society, 41, 73-93.)
  10. 공우석, 김건옥, 이슬기, 박희나, 조수현. 2014. 한반도 주요 산정의 식물종 분포와 기후변화 취약종, 환경영향평가, 23(2), 119-136.(Kong WS, Kim KO, Lee SG, Park HN, Cho SH. 2014. Distribution of High Mountain Plants and Species Vulnerability Against Climate Change, Journal of Environmental Impact Assessment, 23(2), 119-136.) https://doi.org/10.14249/eia.2014.23.2.119
  11. 구경아, 박원규, 공우석. 2001. 한라산 구상나무(Abies koreana W.)의 연륜연대학적 연구-기후변화에 따른 생장변동 분석, 한국생태학회지, 24(5), 281-288.(Koo KA, Park WK, Kong WS. 2001. Effects of Climate Change on the Growths= Dendrochronological Analysis of Abies koreana W. at Mt. Halla, Korea, Journal of Ecology and Environment, 24(5), 281-288.)
  12. 임종환, 우수영, 권미정, 천정화, 신준환. 2006. 한라산 구상나무 건전개체와 쇠약개체의 온도 변화에 따른 광합성능력과 수분이용효율, 한국임학회지, 95(6), 705-710.(Lim JH, Woo SY, Kwon MJ, Chun JH, Shin JH. 2006. Photosynthetic Capacity and Water Use Efficiency under Different Temperature Regimes on Healthy and Declining Korean Fir in Mt. Halla, Journal of Korean Forest Society, 95(6), 705-710.)
  13. 유가영, 김인애. 2008. 기후변화 취약성 평가지표의 개발 및 도입방안, 한국환경정책 평가연구원.(Yoo GY, Kim IE. 2008. Development and introduction method of vulnerability assessment indicators of climate change, Korea Environment Institute, RE-05.)
  14. 홍용표, 안지영, 김영미, 양병훈, 송정호. 2011. 남한지역 구상나무와 분비나무 집단에서의 nSSR 표지 유전 변이, 한국임학회지, 100, 557-584.(Hong YP, Ahn JY, Kim YM, Yang BH, Song JH. 2011. Genetic Variation of nSSR Markers in Natural Populations of Abies koreana and Abies nephrolepis in South Korea, J Korean For Soc, 100, 557-584.)
  15. 환경부, 국립환경과학원. 2014. 한국 기후변화 평가 보고서 2014 -기후변화 영향 및 적응.(MOE, NIER. 2014. Korean climate change assessment report 2014.)
  16. Austin M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches, Ecol Model, 200, 1-19. https://doi.org/10.1016/j.ecolmodel.2006.07.005
  17. Bertin RI. 2008. Plant phenology and distribution in relation to recent climate change, The Journal of the Torrey Botanical Society, 135(1), 126-146. https://doi.org/10.3159/07-RP-035R.1
  18. Betts MG, Diamond AW, Forbes GJ, Villard MA, Gunn JS. 2006. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence, Ecol Model 191, 197-224. https://doi.org/10.1016/j.ecolmodel.2005.04.027
  19. Bochet E, Rubio JL, Poesen J. 1999. Modified topsoil islands within patchy Mediterranean vegetation in SE Spain, CATENA, 38, 23-44. https://doi.org/10.1016/S0341-8162(99)00056-9
  20. Brown JL. 2014. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses, Methods Ecol Evol, 5, 694-700. https://doi.org/10.1111/2041-210X.12200
  21. Chuine I. 2010. Why does phenology drive species distribution? Philos Trans R Soc B Biol Sci, 365, 3149-3160. https://doi.org/10.1098/rstb.2010.0142
  22. Chuine I, Beaubien EG. 2001. Phenology is a major determinant of tree species range, Ecol Lett, 4, 500-510. https://doi.org/10.1046/j.1461-0248.2001.00261.x
  23. Cousins SA, Lindborg R. 2004. Assessing changes in plant distribution patterns-indicator species versus plant functional types, Ecol Indic, 4, 17-27. https://doi.org/10.1016/j.ecolind.2003.11.002
  24. Crossman ND, Bryan BA, Summers DM. 2012. Identifying priority areas for reducing species vulnerability to climate change, Diversity and Distributions, 18(1), 60-72. https://doi.org/10.1111/j.1472-4642.2011.00851.x
  25. Dormann CF. 2007. Effects of incorporating spatial autocorrelation into the analysis of species distribution data, Glob Ecol Biogeogr, 16, 129-138. https://doi.org/10.1111/j.1466-8238.2006.00279.x
  26. Elith J, Leathwick JR. 2009. Species distribution models: ecological explanation and prediction across space and time, Annu Rev Ecol Evol Syst, 40, 677. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  27. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists, Divers Distrib 17, 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  28. Eo JK, Hyun JO. 2013. Comparative anatomy of the needles of Abies koreana and its related species, Turk J Bot, 37, 553-560.
  29. Franklin J. 2010. Mapping species distributions: spatial inference and prediction, Cambridge University Press.
  30. Guo WY, Lambertini C, Li XZ, Meyerson LA, Brix H. 2013. Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche, Glob Change Biol, 19, 3406-3422.
  31. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas, Int J Climatol, 25, 1965-1978. https://doi.org/10.1002/joc.1276
  32. Hodkinson DJ, Thompson K. 1997. Plant Dispersal: The Role of Man, J Appl Ecol, 34, 1484. https://doi.org/10.2307/2405264
  33. Hof AR, Jansson R, Nilsson C. 2012. The usefulness of elevation as a predictor variable in species distribution modelling, Ecological Modelling, 246, 86-90. https://doi.org/10.1016/j.ecolmodel.2012.07.028
  34. Hosmer Jr DW, Lemeshow S. 2004. Applied logistic regression, John Wiley & Sons.
  35. IPCC. 2014. Climate change 2014: impacts, adaptation, and vulnerability.
  36. Jobbagy EG, Jackson RB. 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants, Biogeochemistry, 53, 51-77. https://doi.org/10.1023/A:1010760720215
  37. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schroder B, Lindenborn J, Reinfelder V, Wilting A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models, Diversity and Distributions, 19(11), 1366-1379. https://doi.org/10.1111/ddi.12096
  38. Khanum R, Mumtaz AS, Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling, Acta Oecologica, 49, 23-31. https://doi.org/10.1016/j.actao.2013.02.007
  39. Kim YS, Chang CS, Kim CS, Gardner M. 2011. Abies koreana. The IUCN Red List of Threatened Species, Version 2014.3, , Downloaded on 09 January 2015.
  40. Kormutak A, Lee SW, Hong KN, Yang BH, Hong YP. 2008. Crossability relationships between Korean firs Abies koreana, A. nephrolepis and A. holophylla and some other representatives of the genus Abies, Biologia (Bratisl), 63, 94-99.
  41. Lee BY, Nam GH, Yun JH, Cho GY, Lee JS, Kim JH, Oh KH. 2010. Biological indicators to monitor responses against climate change in Korea, Korean J Pl Taxon, 40, 202-207.
  42. Liu C, White M, Newell G. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data, (R. Pearson, ed.) J Biogeogr, 40, 778-789. https://doi.org/10.1111/jbi.12058
  43. McCormack JE, Zellmer AJ, Knowles LL. 2010. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models, Evolution, 64, 1231-1244.
  44. Merow C, Smith MJ, Silander JA. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter, Ecography, 36, 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  45. Naimi B, Skidmore AK, Groen TA, Hamm NA. 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling, J Biogeogr, 38, 1497-1509. https://doi.org/10.1111/j.1365-2699.2011.02523.x
  46. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change, Annu Rev Ecol Evol Syst, 637-669.
  47. Pearson RG, Raxworthy CJ, Nakamura M, Townsend PA. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, J Biogeogr, 34, 102-117.
  48. Phillips SJ, Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  49. Rathcke B, Lacey EP. 1985. Phenological patterns of terrestrial plants, Annu Rev Ecol Syst, 179-214.
  50. Segurado P, Araujo MB, Kunin WE. 2006. Consequences of spatial autocorrelation for niche-based models, J Appl Ecol, 43, 433-444. https://doi.org/10.1111/j.1365-2664.2006.01162.x
  51. Song JS. 1991. Phytosociology of subalpine coniferous forests in Korea I. Syntaxonomical interpretation, Ecol Res, 6, 1-19. https://doi.org/10.1007/BF02353866
  52. Swets JA. 1988. Measuring the accuracy of diagnostic systems, Science, 240, 1285-1293. https://doi.org/10.1126/science.3287615
  53. Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa, Ecology, 85, 1688-1699. https://doi.org/10.1890/03-0148
  54. Veloz SD. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models, J Biogeogr, 36, 2290-2299. https://doi.org/10.1111/j.1365-2699.2009.02174.x
  55. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, et al. 2002. Ecological responses to recent climate change, Nature, 416, 389-395. https://doi.org/10.1038/416389a
  56. Warren DL, Seifert SN. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria, Ecol Appl, 21, 335-342. https://doi.org/10.1890/10-1171.1
  57. Watling JI, Romanach SS, Bucklin DN, Speroterra C, Brandt LA, Pearlstine LG, Mazzotti FJ. 2012. Do bioclimate variables improve performance of climate envelope models? Ecol Model, 246, 79-85. https://doi.org/10.1016/j.ecolmodel.2012.07.018
  58. Wilson EH. 1920. Four new conifers from Korea, J Arnold Arbor, 1, 186-190.
  59. Woo SY, Lim JH, Lee DK. 2008. Effects of temperature on photosynthetic rates in Korean fir(Abies koreana) between healthy and dieback population, Journal of integrative plant biology, 50(2), 190-193. https://doi.org/10.1111/j.1744-7909.2007.00587.x
  60. Woodward FI. 1987. Climate and plant distribution, Cambridge University Press.
  61. Woodward FI, Beerling DJ. 1997. The dynamics of vegetation change: health warnings for equilibrium 'dodo' models, Global Ecology and Biogeography Letters, 413-418.
  62. Xiang X, Cao M, Zhou Z. 2007. Fossil history and modern distribution of the genus Abies (Pinaceae), Front For China, 2, 355-365. https://doi.org/10.1007/s11461-007-0058-4
  63. Zhang D, Katsuki T, Rushforth K. 2013. Abies nephrolepis, The IUCN Red List of Threatened Species, Version 2014.3, , Downloaded on 09 January 2015.
  64. http://library.me.go.kr

Cited by

  1. Disturbance in seedling development of Korean fir (Abies koreana Wilson) tree species on higher altitude forests of Mt. Hallasan National Park, the central part of Jeju Island, Korea vol.41, pp.1, 2017, https://doi.org/10.1186/s41610-017-0037-0
  2. Disturbed regeneration of saplings of Korean fir (Abies koreana Wilson), an endemic tree species, in Hallasan National Park, a UNESCO Biosphere Reserve, Jeju Island, Korea vol.5, pp.1, 2016, https://doi.org/10.1016/j.imic.2016.02.001
  3. Climate Change Impact on Korean Forest and Forest Management Strategies vol.35, pp.3, 2017, https://doi.org/10.11626/KJEB.2017.35.3.413
  4. Vascular Plants Distributed in Baekdudaegan Mountains (Gitdaebaegibong~Mt. Cheonghwasan) vol.32, pp.1, 2018, https://doi.org/10.13047/KJEE.2018.32.1.1
  5. Germination Characterisitics of Abies koreana Wilson Seed in Subalpine Coniferous Forest by Collecting Location vol.52, pp.1, 2018, https://doi.org/10.14397/jals.2018.52.1.133
  6. Comparing climate projections for Asia, East Asia and South Korea vol.26, pp.2, 2017, https://doi.org/10.14249/eia.2017.26.2.114
  7. InVEST모델을 이용한 생태계서비스의 가치 평가 - 구상나무 분포지를 대상으로 - vol.27, pp.2, 2015, https://doi.org/10.14249/eia.2018.27.2.181
  8. 백두대간 강원도 4개 권역의 관속식물상 - 오대산, 대관령~석병산, 청옥산~덕항산, 금대봉~태백산 권역을 중심으로- vol.21, pp.4, 2018, https://doi.org/10.13087/kosert.2018.21.4.43
  9. 한라산 구상나무 공간적 고사패턴 분석을 통한 고사원인 추정 - 기후변화에 따른 토양수분 과다 가능성 제안 - vol.21, pp.1, 2015, https://doi.org/10.5532/kjafm.2019.21.1.1
  10. Potential Distribution of Endangered Coniferous Tree Species under Climate Change vol.11, pp.4, 2015, https://doi.org/10.15531/ksccr.2020.11.4.215
  11. 국내 구상나무(Abies koreana Wilson) 연구 40년: 검토 및 제언 vol.34, pp.5, 2015, https://doi.org/10.13047/kjee.2020.34.5.358
  12. Intra-annual dynamics of cambial and xylem phenology in subalpine conifers at Deogyusan National Park in the Republic of Korea vol.67, pp.1, 2015, https://doi.org/10.1186/s10086-021-01950-2