DOI QR코드

DOI QR Code

Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells

  • Ahn, Jun-Ho (Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Han, Byeal-I (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Lee, Michael (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • Received : 2015.01.12
  • Accepted : 2015.04.08
  • Published : 2015.07.01

Abstract

The clinical benefits of oncogenic BRAF inhibitor therapies are limited by the emergence of drug resistance. In this study, we investigated the role of a negative regulator of the MAPK pathway, Spry2, in acquired resistance using BRAF inhibitor-resistant derivatives of the BRAF-V600E melanoma (A375P/Mdr). Real-time RT-PCR analysis indicated that the expression of Spry2 was higher in A375P cells harboring the BRAF V600E mutation compared with wild-type BRAF-bearing cells (SK-MEL-2) that are resistant to BRAF inhibitors. This result suggests the ability of BRAF V600E to evade feedback suppression in cell lines with BRAF V600E mutations despite high Spry2 expression. Most interestingly, Spry2 exhibited strongly reduced expression in A375P/Mdr cells with acquired resistance to BRAF inhibitors. Furthermore, the overexpression of Spry2 partially restored sensitivity to the BRAF inhibitor PLX4720 in two BRAF inhibitor-resistant cells, indicating a positive role for Spry2 in the growth inhibition induced by BRAF inhibitors. On the other hand, long-term treatment with PLX4720 induced pERK reactivation following BRAF inhibition in A375P cells, indicating that negative feedback including Spry2 may be bypassed in BRAF mutant melanoma cells. In addition, the siRNA-mediated knockdown of Raf-1 attenuated the rebound activation of ERK stimulated by PLX4720 in A375P cells, strongly suggesting the positive role of Raf-1 kinase in ERK activation in response to BRAF inhibition. Taken together, these data suggest that RAF signaling may be released from negative feedback inhibition through interacting with Spry2, leading to ERK rebound and, consequently, the induction of acquired resistance to BRAF inhibitors.

Keywords

References

  1. Ahn, J. H., Eum, K. H. and Lee, M. (2010) Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts. BMB Rep. 43, 205-211. https://doi.org/10.5483/BMBRep.2010.43.3.205
  2. Ahn, J. H., Kim, Y. K. and Lee, M. (2011) Decreased interaction of Raf-1 with its negative regulator Spry2 as a mechanism for acquired drug resistance. Biolmol. Ther. 19, 174-180. https://doi.org/10.4062/biomolther.2011.19.2.174
  3. Ahn, J. H. and Lee, M. (2013) Autophagy-dependent survival of mutant B-Raf melanoma cells selected for resistance to apoptosis induced by inhibitors against oncogenic B-Raf. Biomol. Ther. 21, 114-120. https://doi.org/10.4062/biomolther.2013.012
  4. Ahn, J. H. and Lee, M. (2014) The siRNA-mediated downregulation of N-Ras sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors. Mol. Cell. Biochem. 392, 239-247. https://doi.org/10.1007/s11010-014-2034-2
  5. Aplin, A. E., Kaplan, F. M. and Shao, Y. (2011) Mechanisms of resistance to RAF inhibitors in melanoma. J. Invest. Dermatol. 131, 1817-1820. https://doi.org/10.1038/jid.2011.147
  6. Brady, S. C., Coleman, M. L., Munro, J., Feller, S. M., Morrice, N. A. and Olson, M. F. (2009) Sprouty2 association with B-Raf is regulated by phosphorylation and kinase conformation. Cancer Res. 69, 6773-6781. https://doi.org/10.1158/0008-5472.CAN-08-4447
  7. Chandarlapaty, S. (2012) Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discov. 2, 311-319. https://doi.org/10.1158/2159-8290.CD-12-0018
  8. Davies, H., Bignell, G., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R. and Futreal, P. A. (2002) Mutations of the B-Raf gene in human cancer. Nature 417, 949-954. https://doi.org/10.1038/nature00766
  9. Dultz, L. A., Dhar, S., Ogilvie, J. B., Heller, K. S., Bar-Sagi, D. and Patel, K. N. (2013) Clinical and therapeutic implications of Sprouty2 feedback dysregulation in BRAF V600E-mutation-positive papillary thyroid cancer. Surgery 154, 1239-1244. https://doi.org/10.1016/j.surg.2013.06.024
  10. Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., O'Dwyer, P. J., Lee, R. J., Grippo, J. F., Nolop, K. and Chapman, P. B. (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809-819. https://doi.org/10.1056/NEJMoa1002011
  11. Gross, I., Bassit, B., Benezra, M. and Licht, J. D. (2001) Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J. Biol. Chem. 276, 46460-46468. https://doi.org/10.1074/jbc.M108234200
  12. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. and Krasnow, M. A. (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253-263. https://doi.org/10.1016/S0092-8674(00)80919-8
  13. Heidorn, S. J., Milagre, C., Whittaker, S., Nourry, A., Niculescu-Duvas, I., Dhomen, N., Hussain, J., Reis-Filho, J. S., Springer, C. J., Pritchard, C. and Marais, R. (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209-221. https://doi.org/10.1016/j.cell.2009.12.040
  14. Holderfield, M., Deuker, M. M., McCormick, F. and McMahon, M. (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455-467. https://doi.org/10.1038/nrc3760
  15. Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., Emery, C. M., Stransky, N., Cogdill, A. P., Barretina, J., Caponigro, G., Hieronymus, H., Murray, R. R., Salehi-Ashtiani, K., Hill, D. E., Vidal, M., Zhao, J. J., Yang, X., Alkan, O., Kim, S., Harris, J. L., Wilson, C. J., Myer, V. E., Finan, P. M., Root, D. E., Roberts, T. M., Golub, T., Flaherty, K. T., Dummer, R., Weber, B. L., Sellers, W. R., Schlegel, R., Wargo, J. A., Hahn, W. C. and Garraway, L. A. (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972. https://doi.org/10.1038/nature09627
  16. Joseph, E. W., Pratilas, C. A., Poulikakos, P. I., Tadi, M., Wang, W., Taylor, B. S., Halilovic, E., Persaud, Y., Xing, F., Viale, A., Tsai, J., Chapman, P. B., Bollag, G., Solit, D. B. and Rosen, N. (2010) The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. U.S.A. 107, 14903-14908. https://doi.org/10.1073/pnas.1008990107
  17. Kim, Y. K., Ahn, S. K. and Lee, M. (2012) Differential sensitivity of melanoma cell lines with differing B-Raf mutational status to the new oncogenic B-Raf kinase inhibitor UI-152. Cancer Lett. 320, 215-224. https://doi.org/10.1016/j.canlet.2012.03.006
  18. Lito, P., Pratilas, C. A., Joseph, E. W., Tadi, M., Halilovic, E., Zubrowski, M., Huang, A., Wong, W. L., Callahan, M. K., Merghoub, T., Wolchok, J. D., de Stanchina, E., Chandarlapaty, S., Poulikakos, P. I., Fagin, J. A. and Rosen, N. (2012) Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668-682. https://doi.org/10.1016/j.ccr.2012.10.009
  19. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  20. McGettigan, S. (2014) Dabrafenib: a new therapy for use in BRAF-mutated metastatic melanoma. J. Adv. Pract. Oncol. 5, 211-215.
  21. Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., Chen, Z., Lee, M. K., Attar, N., Sazegar, H., Chodon, T., Nelson, S. F., McArthur, G., Sosman, J. A., Ribas, A. and Lo, R. S. (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973-977. https://doi.org/10.1038/nature09626
  22. Poulikakos, P. I., Persaud, Y., Janakiraman, M., Kong, X., Ng, C., Moriceau, G., Shi, H., Atefi, M., Titz, B., Gabay, M. T., Salton, M., Dahlman, K. B., Tadi, M., Wargo, J. A., Flaherty, K. T., Kelley, M. C., Misteli, T., Chapman, P. B., Sosman, J. A., Graeber, T. G., Ribas, A., Lo, R. S., Rosen, N. and Solit, D. B. (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387-390. https://doi.org/10.1038/nature10662
  23. Pratilas, C. A., Taylor, B. S., Ye, Q., Viale, A., Sander, C., Solit, D. B. and Rosen, N. (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc. Natl. Acad. Sci. U.S.A. 106, 4519-4524. https://doi.org/10.1073/pnas.0900780106
  24. Pratilas, C. A., Xing, F. and Solit, D. B. (2012) Targeting oncogenic BRAF in human cancer. Curr. Top. Microbiol. Immunol. 355, 83-98.
  25. Rizos, H., Menzies, A. M., Pupo, G. M., Carlino, M. S., Fung, C., Hyman, J., Haydu, L. E., Mijatov, B., Becker, T. M., Boyd, S. C., Howle, J., Saw, R., Thompson, J. F., Kefford, R. F., Scolyer, R. A. and Long, G. V. (2014) BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin. Cancer Res. 20, 1965-1977. https://doi.org/10.1158/1078-0432.CCR-13-3122
  26. Sabbatino, F., Wang, Y., Wang, X., Ferrone, S. and Ferrone, C. R. (2013) Emerging BRAF inhibitors for melanoma. Expert Opin. Emerg. Drugs 18, 431-443. https://doi.org/10.1517/14728214.2013.842975
  27. Tsavachidou, D., Coleman, M. L., Athanasiadis, G., Li, S., Licht, J. D., Olson, M. F. and Weber, B. L. (2004) SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res. 64, 5556-5559. https://doi.org/10.1158/0008-5472.CAN-04-1669
  28. Xu, L., Zhou, J. L., Cohen, M., Bar-Sagi, D. and Patel, K. N. (2010) Spry2 expression correlates with BRAF mutation in thyroid cancer. Surgery 148, 1282-1287. https://doi.org/10.1016/j.surg.2010.09.028
  29. Yusoff, P., Lao, D. H., Ong, S. H., Wong, E. S. M., Lim, J., Lo, T. L., Leong, F., Fong, C. W. and Guy, G. R. (2002) Sprouty2 inhibits the Ras/MAP Kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195-3201. https://doi.org/10.1074/jbc.M108368200

Cited by

  1. Indicators of responsiveness to immune checkpoint inhibitors vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-01000-2
  2. Upregulation of microRNA-1246 is Associated with BRAF Inhibitor Resistance in Melanoma Cells with Mutant BRAF 2017, https://doi.org/10.4143/crt.2016.280
  3. Sialidase Deficiency in Porphyromonas gingivalis Increases IL-12 Secretion in Stimulated Macrophages Through Regulation of CR3, IncRNA GAS5 and miR-21 vol.8, pp.2235-2988, 2018, https://doi.org/10.3389/fcimb.2018.00100
  4. Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis vol.27, pp.3, 2015, https://doi.org/10.4062/biomolther.2018.133
  5. Upregulation of S100A9 contributes to the acquired resistance to BRAF inhibitors vol.41, pp.11, 2019, https://doi.org/10.1007/s13258-019-00856-0
  6. MicroRNA-205-5p inhibits skin cancer cell proliferation and increase drug sensitivity by targeting TNFAIP8 vol.11, pp.1, 2015, https://doi.org/10.1038/s41598-021-85097-6