DOI QR코드

DOI QR Code

Autophagy Regulates Formation of Primary Cilia in Mefloquine-Treated Cells

  • Shin, Ji Hyun (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Bae, Dong-Jun (ASAN Institute for Life Science, University of Ulsan College of Medicine, ASAN Medical Center) ;
  • Kim, Eun Sung (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Kim, Han Byeol (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Park, So Jung (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Jo, Yoon Kyung (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Jo, Doo Sin (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Jo, Dong-Gyu (The School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Sang-Yeob (ASAN Institute for Life Science, University of Ulsan College of Medicine, ASAN Medical Center) ;
  • Cho, Dong-Hyung (Graduate School of East-West Medical Science, Kyung Hee University)
  • Received : 2015.03.05
  • Accepted : 2015.04.20
  • Published : 2015.07.01

Abstract

Primary cilia have critical roles in coordinating multiple cellular signaling pathways. Dysregulation of primary cilia is implicated in various ciliopathies. To identify specific regulators of autophagy, we screened chemical libraries and identified mefloquine, an anti-malaria medicine, as a potent regulator of primary cilia in human retinal pigmented epithelial (RPE) cells. Not only ciliated cells but also primary cilium length was increased in mefloquine-treated RPE cells. Treatment with mefloquine strongly induced the elongation of primary cilia by blocking disassembly of primary cilium. In addition, we found that autophagy was increased in mefloquine-treated cells by enhancing autophagic flux. Both chemical and genetic inhibition of autophagy suppressed ciliogenesis in mefloquine-treated RPE cells. Taken together, these results suggest that autophagy induced by mefloquine positively regulates the elongation of primary cilia in RPE cells.

Keywords

References

  1. Berbari, N. F., O'Connor, A. K., Haycraft, C. J. and Yoder, B. K. (2009) The primary cilium as a complex signaling center. Curr. Biol. 19, R526-R535. https://doi.org/10.1016/j.cub.2009.05.025
  2. DiBella, L. M., Park, A. and Sun, Z. (2009) Zebrafi sh Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum. Mol. Genet. 18, 595-606. https://doi.org/10.1093/hmg/ddn384
  3. Follit, J. A., Xu, F., Keady, B. T. and Pazour, G. J. (2009) Characterization of mouse IFT complex B. Cell Motil. Cytoskeleton 66, 457-468. https://doi.org/10.1002/cm.20346
  4. Gerdes, J. M. and Katsanis, N. (2008) Ciliary function and Wnt signal modulation. Curr. Top. Dev. Biol. 85, 175-195. https://doi.org/10.1016/S0070-2153(08)00807-7
  5. Goetz, S. C., and Anderson, K. V. (2010) The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331-344. https://doi.org/10.1038/nrg2774
  6. Hao, L., Thein, M., Brust-Mascher, I., Civelekoglu-Scholey, G., Lu, Y., Acar, S., Prevo, B., Shaham, S. and Scholey, J. M. (2011) Intrafl agellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat. Cell Biol. 13, 790-798. https://doi.org/10.1038/ncb2268
  7. Hood, J. E., Jenkins, J. W., Milatovic, D., Rongzhu, L. and Aschner, M. (2010) Mefloquine induces oxidative stress and neurodegeneration in primary rat cortical neurons. Neurotoxicology 31, 518-523. https://doi.org/10.1016/j.neuro.2010.05.005
  8. Huber, T. B., Edelstein, C. L., Hartleben, B., Inoki, K., Jiang, M., Koya, D., Kume, S., Lieberthal, W., Pallet, N., Quiroga, A., Ravichandran, K., Susztak, K., Yoshida, S. and Dong, Z. (2012) Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8, 1009-1031. https://doi.org/10.4161/auto.19821
  9. Ishikawa, H. and Marshall, W. F. (2011) Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12, 222-234. https://doi.org/10.1038/nrm3085
  10. Janowsky, A., Eshleman, A. J., Johnson, R. A., Wolfrum, K. M., Hinrichs, D. J., Yang, J., Zabriskie, T. M., Smilkstein, M. J. and Riscoe, M.K. (2014) Mefloquine and psychotomimetics share neurotransmitter receptor and transporter interactions in vitro. Psychopharmacology (Berl) 231, 2771-2783. https://doi.org/10.1007/s00213-014-3446-0
  11. Kim, J., Lee, J. E., Heynen-Genel, S., Suyama, E., Ono, K., Lee, K., Ideker, T., Aza-Blanc, P. and Gleeson, J. G. (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464, 1048-1051. https://doi.org/10.1038/nature08895
  12. Kim, J. I., Kim, J., Jang, H. S., Noh, M. R., Lipschutz, J. H. and Park, K. M. (2013) Reduction of oxidative stress during recovery accelerates normalization of primary cilia length that is altered after ischemic injury in murine kidneys. Am. J. Physiol. Renal. Physiol. 304, F1283-F1294. https://doi.org/10.1152/ajprenal.00427.2012
  13. Kiprilov, E. N., Awan, A., Desprat, R., Velho, M., Clement, C. A., Byskov, A. G., Andersen, C. Y., Satir, P., Bouhassira, E. E., Christensen, S. T. and Hirsch, R. E. (2008) Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J. Cell Biol. 180, 897-904. https://doi.org/10.1083/jcb.200706028
  14. Klionsky, D. J. (2007) Autophagy : from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931-937. https://doi.org/10.1038/nrm2245
  15. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R.T., Acevedo-Arozena, A., Adeli K, et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544. https://doi.org/10.4161/auto.19496
  16. Kroemer, G., Marino, G. and Levine, B. (2010) Autophagy and the integrated stress response. Mol. Cell 40, 280-293. https://doi.org/10.1016/j.molcel.2010.09.023
  17. Lista P, Straface, E., Brunelleschi, S., Franconi, F. and Malorni, W. (2011) On the role of autophagy in human diseases: a gender perspective. J. Cell. Mol. Med. 15, 1443-1457. https://doi.org/10.1111/j.1582-4934.2011.01293.x
  18. Mizushima, N., Levine, B., Cuervo, A. M. and Klionsky, D. J. (2008) Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075. https://doi.org/10.1038/nature06639
  19. Pampliega, O., Orhon, I., Patel, B., Sridhar, S., Diaz-Carretero, A., Beau, I., Codogno, P., Satir, B. H., Satir, P. and Cuervo, A. M. (2013) Functional interaction between autophagy and ciliogenesis. Nature 502, 194-200. https://doi.org/10.1038/nature12639
  20. Quinlan, R. J., Tobin, J. L. and Beales, P. L. (2008) Modeling ciliopathies: Primary cilia in development and disease. Curr. Top. Dev. Biol. 84, 249-310. https://doi.org/10.1016/S0070-2153(08)00605-4
  21. Ravichandran, K. and Edelstein, C. L. (2014) Polycystic kidney disease: a case of suppressed autophagy? Semin. Nephrol. 34, 27-33. https://doi.org/10.1016/j.semnephrol.2013.11.005
  22. Rubinsztein, D. C. (2006) The roles of intracellular protein-degradation pathway in neurodegeneration. Nature 443, 780-786. https://doi.org/10.1038/nature05291
  23. Shin, J. H., Park, S. J., Kim, E. S., Jo, Y. K., Hong, J. and Cho, D.H. (2012a) Sertindole, a potent antagonist at dopamine $D_2$ receptors, induces autophagy by increasing reactive oxygen species in SHSY5Y neuroblastoma cells. Biol. Pharm. Bull. 35, 1069-1075. https://doi.org/10.1248/bpb.b12-00009
  24. Shin, J. H., Park, S. J., Jo, Y. K., Kim, E. S., Kang, H., Park, J. H., Lee, E. H. and Cho, D. H. (2012b) Suppression of autophagy exacerbates Mefloquine-mediated cell death. Neurosci. Lett. 515, 162-167. https://doi.org/10.1016/j.neulet.2012.03.040
  25. Singla, V. and Reiter, J. F. (2006) The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629-633. https://doi.org/10.1126/science.1124534
  26. Tang, Z., Lin, M. G., Stowe, T. R., Chen, S., Zhu, M., Stearns, T., Franco, B. and Zhong, Q. (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502, 254-257. https://doi.org/10.1038/nature12606
  27. Toovey, S. (2009) Mefloquine neurotoxicity: a literature review. Travel Med. Infect. Dis. 7, 2-6. https://doi.org/10.1016/j.tmaid.2008.12.004

Cited by

  1. Autophagy and primary cilia: dual interplay vol.39, 2016, https://doi.org/10.1016/j.ceb.2016.01.008
  2. Intermittent high glucose-induced oxidative stress modulates retinal pigmented epithelial cell autophagy and promotes cell survival via increased HMGB1 vol.18, pp.1, 2018, https://doi.org/10.1186/s12886-018-0864-5
  3. The ciliary protein RPGRIP1L governs autophagy independently of its proteasome-regulating function at the ciliary base in mouse embryonic fibroblasts vol.14, pp.4, 2018, https://doi.org/10.1080/15548627.2018.1429874
  4. TSC1 and TSC2 regulate cilia length and canonical Hedgehog signaling via different mechanisms vol.75, pp.14, 2018, https://doi.org/10.1007/s00018-018-2761-8
  5. Constitutively-active FGFR3 disrupts primary cilium length and IFT20 trafficking in various chondrocyte models of achondroplasia vol.27, pp.1, 2015, https://doi.org/10.1093/hmg/ddx374
  6. Interplay Between Primary Cilia and Autophagy and Its Controversial Roles in Cancer vol.27, pp.4, 2015, https://doi.org/10.4062/biomolther.2019.056
  7. Geniposide alleviates lipopolysaccharide-caused apoptosis of murine kidney podocytes by activating Ras/Raf/MEK/ERK-mediated cell autophagy vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2019.1601630
  8. The Autophagy Regulator p62 Controls PTEN-Dependent Ciliogenesis vol.8, pp.None, 2015, https://doi.org/10.3389/fcell.2020.00465
  9. Group III phospholipase A2 downregulation attenuated survival and metastasis in ovarian cancer and promotes chemo-sensitization vol.40, pp.1, 2015, https://doi.org/10.1186/s13046-021-01985-9
  10. Cellular targets of mefloquine vol.464, pp.None, 2015, https://doi.org/10.1016/j.tox.2021.152995