References
- IEEE Standard Classification for Software Anomalies, IEEE Std. 1044-2009.
- C. Catal, "Software fault prediction:A literature review and current trends," Expert Systems with Applications, Vol.38, No.4, pp.4626-4636, 2011. https://doi.org/10.1016/j.eswa.2010.10.024
- R. Malhotra, "A systematic review of machine learning techniques for software fault prediction," Applied Soft. Computing Vol.27, pp.504-518, 2015. https://doi.org/10.1016/j.asoc.2014.11.023
- D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic, "Software fault prediction metrics: A systematic literature review," Information Soft. Technology, Vol.55, pp.1397-1418, 2013. https://doi.org/10.1016/j.infsof.2013.02.009
- D. E. Harter, C. F. Kemerer, and S. A. Slaughter, "Does Software Process Improvement Reduce the Severity of Defects? A Longitudinal Field Study," IEEE Trans. Software Eng., Vol.38, No.4, pp. 810-827, 2012. https://doi.org/10.1109/TSE.2011.63
- R. Shatnawi and W. Li, "The effectiveness of software metrics in identifying error-prone classes in post-release software evolution process," Journal of Systems and Software, Vol.81, No.11, pp.1868-1882, 2008. https://doi.org/10.1016/j.jss.2007.12.794
- Y. Zhou and H. Leung, "Empirical analysis of object-oriented design metrics for predicting high and low severity faults," IEEE Trans. Software Eng., Vol.32, No.10, pp.771-789, 2006. https://doi.org/10.1109/TSE.2006.102
- Y. Singh, A. Kaur and R. Malhotra, "Empirical validation of object-oriented metrics for predicting fault proneness models," Software Quality Journal, Vol.18, pp.3-35, 2010. https://doi.org/10.1007/s11219-009-9079-6
- T. Menzies and A. Marcus, "Automated Severity Assessment of Software Defect Reports," Proc. of ICSM'2008, pp.346-355.
- E. S. Hong, "A Metrics Set for Measuring Software Module Severity," Journal of The Korea Society of Computer and Information, Vol.20, No.1, pp.197-206, 2015. https://doi.org/10.9708/jksci.2015.20.1.197
- P. S. Bishnu and V. Bhattacherjee, "Software fault prediction using quad tree-based k-means clustering algorithm," IEEE Trans. Knowledge and Data Eng., Vol.24, No.6, pp.1146-1150, 2012. https://doi.org/10.1109/TKDE.2011.163
- E. S. Hong and M. K. Park, "Unsupervised learning model for fault prediction using representative clustering algorithms," KIPS Trans. Software and Data Engineering, Vol.3, No.2, pp.57-64, 2014. https://doi.org/10.3745/KTSDE.2014.3.2.57
- S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented Design," IEEE Trans. Software Eng., Vol.20, No.6, pp.476-493, 1994. https://doi.org/10.1109/32.295895
- E. S. Hong, "Ambiguity Analysis of Defectiveness in NASA MDP data sets," Journal of the Korea Society of IT Services, Vol.12, No.2, pp.361-371, 2013. https://doi.org/10.9716/KITS.2013.12.2.361
- T. Dietterich, "Approximate statistical tests for comparing supervised classification learning algorithms," Neural Computation Vol.10, pp.1895-1924, 1998. https://doi.org/10.1162/089976698300017197