DOI QR코드

DOI QR Code

Color matching application which can help color blind people based on smart phone

색맹인 사람들을 도울 수 있는 스마트 폰 기반 색상 매칭 애플리케이션

  • 정명범 (성결대학교 컴퓨터공학부)
  • Received : 2015.03.20
  • Accepted : 2015.05.11
  • Published : 2015.05.30

Abstract

In this paper, we proposed the color matching application based on smart phone which can help color blind people. For color blind people, the existing methods and applications supported color matching application which based on mobile. However, because the most research only showed the color value and color name through capture image of mobile camera, those cannot compare with capture image color of mobile camera and color of real object in real-time. To solve those problem, we proposed the color matching algorithm and developed the color matching application that can compare with color of mobile camera's capture image and color of real object in real-time, because the proposed application divides screen of smart phone into two parts and it show one part as capture image of smart phone camera and the other part as real-time camera image of smart phone. Color matching algorithm calculate cosine similarity using Red, Green, Blue, and Hue value of each image for real-time comparing and show matching result according to similarity value in real-time. To evaluate the performance of the proposed application, we tested a color matching experiment using the proposed application and the matching result was 98% success rate. Therefore, the proposed application will be a useful application which can help color blind people.

본 논문에서는 색맹인 사람들을 위한 스마트 폰 기반 색상 매칭 기법을 제안한다. 색맹인 사람들을 위해 기존 연구로 모바일 기반 애플리케이션들이 제공되기는 하였으나, 대부분의 연구가 사진 촬영 후 색상의 값, 이름만 제공할 뿐 동일 색상을 실시간으로 비교하지 못하는 불편함이 있다. 이러한 불편함을 해소하기 위해 우리는 스마트 폰의 카메라로 색상 비교를 위해 사진을 촬영하여 화면 옆에 두고, 실시간 입력되는 카메라 영상을 비교하여 유사 색상을 알려줌으로써 실시간 비교가 가능한 색상 매칭 알고리즘과 이를 이용한 애플리케이션을 개발하였다. 색상 매칭 알고리즘은 실시간 비교를 위해 Red, Green, Blue 그리고 Hue 값을 이용하여 코사인 유사도를 계산하며, 유사도 값에 따라 매칭 결과를 실시간으로 알려준다. 제안 방법의 성능을 판단하기 위해 색상 매칭 실험을 하였으며, 그 결과 매칭 성공률은 약 98%를 나타냈다. 따라서 제안 방법은 색맹인 사용자가 스마트 폰을 이용하여 자신이 원하는 색을 찾는데 효과적인 기법이 될 것이다.

Keywords

References

  1. T. Ohkubo, and K. Kazuyuki, "A color compensation vision system for color-blind people," In: Proceedings of SICE Annual Conference 2008 IEEE, pp. 1286-1289, August 2008.
  2. T. Ohkubo, K. Kobayashi, K. Watanabe, and Y. Kurihara, "Development of a time-sharing-based color-assisted vision system for persons with color-vision deficiency," In: Proceedings of SICE Annual Conference 2010 IEEE, pp. 2499-2503, August 2010.
  3. V. K. Y. V. S. Kondo, and V. Y. Tsuchiya, "Development of color-distinguishing application "ColorAttendant"," FUJITSU Sci. Tech. J, Vol. 45, No. 2, pp. 247-253, 2009.
  4. S. Schmitt, S. Stein, F. Hampe, and D. Paulus, "Mobile services supporting color vision deficiency," In: Proceedings of 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) IEEE, pp. 1413-1420, May 2012.
  5. A. S. Manaf, and R. F. Sari, "Color recognition system with augmented reality concept and finger interaction: Case study for color blind aid system," In : Proceedings of 9th International Conference on ICT and Knowledge Engineering (ICT & Knowledge Engineering) IEEE, pp. 118-123, January 2012.
  6. R. Harwahyu, A. S. Manaf, B. S. Ananto, B. A. Wicaksana, and R. F. Sari, "Implementation of color-blind aid system," Journal of Computer Science, Vol. 9, No. 6, pp. 794, 2013. https://doi.org/10.3844/jcssp.2013.794.810
  7. RGB Color Codes Chart, RapidTables.com, http://www.rapidtables.com/web/color/RGB_Color.htm
  8. M. B. Chung, and I. J. Ko, "Intelligent copyright protection system using a matching video retrieval algorithm," Multimedia Tools and Applications, Vol. 59, No. 1, pp. 383-401, 2012. https://doi.org/10.1007/s11042-011-0743-z
  9. S. M. Dominguez, T. Keaton, and A. H. Sayed, "Robust finger tracking for wearable computer interfacing," In: Proceedings of the 2001 workshop on Perceptive user interfaces ACM, pp. 1-5, November 2001.
  10. S. Kaur, and D. Aggarwal, "Image Content Based Retrieval System using Cosine Similarity for Skin Disease Images," Advances in Computer Science: an International Journal, Vol. 2, No. 4, pp. 89-95, 2013.
  11. G. Qian, S. Sural, Y. Gu, and S. Pramanik, "Similarity between euclidean and cosine angle distance for nearest neighbor queries," In: Proceedings of the 2004 ACM symposium on Applied computing ACM, pp. 1232-1237, March 2004.