Abstract
In this paper, we propose an algorithm that can recognize not only the number of stretched fingers but also determination of attached fingers for extracting features required for hand gesture recognition. The proposed algorithm detects the hand area in the input image by the skin color range filter based on a color model and labeling, and then recognizes various hand gestures by extracting the number of stretched fingers and determination of attached fingers using curvature information extracted from outlines and feature points. Experiment results show that the recognition rate and the frame rate are similar to those of the conventional algorithm, but the number of gesture cases that can be defined by the extracted characteristics is about four times higher than the conventional algorithm, so that the proposed algorithm can recognize more various gestures.
본 논문에서는 손 제스처 인식에 필요한 특징 추출을 위하여 손가락의 개수뿐만 아니라 붙어있는 손가락 판별까지 인식할 수 있는 알고리즘을 제안한다. 제안하는 알고리즘은 컬러모델 기반의 피부색 범위 필터와 레이블링을 통하여 입력 영상에서 손 영역을 검출하고, 외곽선 및 특징점과 이들로부터 추출한 곡률 정보를 이용해 펴진 손가락의 개수 및 붙어있는 손가락 판별을 통한 특징을 추출하여 다양한 손 제스쳐를 인식한다. 실험결과 인식률과 처리 가능 프레임 레이트(frame rate)는 기존 알고리즘과 유사하였지만, 추출된 특징을 가지고 정의할 수 있는 제스처의 경우의 수는 기존 알고리즘보다 약 4배 정도 많아 훨씬 더 다양한 제스처를 인식할 수 있음을 알 수 있었다.