DOI QR코드

DOI QR Code

Semiquantitative Failure Mode, Effect and Criticality Analysis for Reliability Analysis of Solid Rocket Propulsion System

고체 로켓 추진 기관의 신뢰성 분석을 위한 준-정량적 FMECA

  • Moon, Keun Hwan (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Kim, Jin Kon (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Choi, Joo Ho (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.)
  • 문근환 (한국항공대학교 항공우주 및 기계공학과) ;
  • 김진곤 (한국항공대학교 항공우주 및 기계공학과) ;
  • 최주호 (한국항공대학교 항공우주 및 기계공학과)
  • Received : 2015.02.06
  • Accepted : 2015.04.14
  • Published : 2015.06.01

Abstract

In this study, semiquantitative failure mode, effects, and criticality analysis (FMECA) for the reliability analysis of a solid rocket propulsion system is performed. The semiquantitative FMECA is composed of failure mode and effects analysis (FMEA) and criticality analysis (CA). To perform FMECA, the structure of the solid rocket propulsion system is divided into 43 parts down to the component level, and FMEA is conducted at the design stage considering 137 potential failure modes. CA is then conducted for each failure mode, during which the criticality number is estimated using the failure rate databases. The results demonstrate the relationship between potential failure modes, causes, and effects, and their risk priorities are evaluated qualitatively. Additionally, several failure modes with higher criticality and severity values are selected for high-priority improvement.

본 연구에서는 고체 로켓 추진 기관의 신뢰성 분석을 위해 준-정량적 FMECA를 수행하였다. 준-정량적 FMECA는 고장모드 및 영향 분석(FMEA)과 치명도 분석(CA)를 포함하는 분석 기법으로서, FMECA 수행을 위해서 FMEA는 고체 로켓 추진 기관을 43개의 부품으로 나누어 각 부품에 대하여 도출된 총 137개의 고장모드에 대해 수행하였다. 또한 일부 고장모드의 고장률 데이터를 이용하여 치명도 분석을 수행하였다. 준-정량적 FMECA 수행을 통하여 고체 로켓 추진 기관의 각 부품에서 발생 할 수 있는 잠재적 고장모드와 고장원인 및 영향을 분석, 정리할 수 있었으며, 우선적인 개선 조치가 필요한 중요 고장모드를 확인할 수 있었다.

Keywords

References

  1. U.S House Committee on Science and Technology, 1986, Investigation of the Challenger Accident; Report of the Committee on Science and Technology House of Representatives, U.S. Government Printing Office, Washington D.C., pp. 39-49.
  2. Wells, W. W., 1996, Solid Rocket Booster Reliability Guidebook-Volume II, Society of Automative Engineers, Inc., Warrendale, pp. 119-179.
  3. Korea Agency for Technology and Standards, 2007, Reliability Terms Handbook, Korea Agency for Technology and Standards, Korea, pp. 182-186.
  4. Department of Defence, 1980, Procedures for performing a Failure Mode, Effects and Criticality Analysis, Department of Defence, Washington D.C., pp. 9-21.
  5. Robert, B., Stephen, P. and Michael. R., 1993, Failure Mode, Effects and Criticality Analysis (FMECA), A DoD Information Analysis Center, NewYork, pp. 16-34.
  6. Reliability Information Analysis Center, 1997, Failure Mode / Mechanism Distribution 1997, A DoD Information Analysis Center, NewYork, pp. 13-370.
  7. Dennis, F. M. and Joe, C. M., 1978, Missile Materiel Reliability Prediction Handbook Parts Count Prediction, U.S. Army Missile Research and Development Command, Alabama, pp. 3-175.

Cited by

  1. A Probabilistic based Systems Approach to Reliability Prediction of Solid Rocket Motors vol.17, pp.4, 2016, https://doi.org/10.5139/IJASS.2016.17.4.565