References
- Beckmann, C. F., Jenkinson, M. and Smith, S. M. (2003). General multilevel linear modeling for group analysis in FMRI, NeuroImage, 20, 1052-1063. https://doi.org/10.1016/S1053-8119(03)00435-X
- Demmel, J. W. (1997). Applied Numerical Linear Algebra, SIAM, Philadelphia, PA.
- Fleming, T. R. and Harrington, D. P. (2005). Counting Processes and Survival Analysis, John Wiley & Sons, Inc., Hoboken, NJ.
- Ha, I. D., Lee, Y. J. and Song, J.-K. (2001). Hierarchical likelihood approach for frailty models, Biometrika, 88, 233-243. https://doi.org/10.1093/biomet/88.1.233
- Hager, W. W. (1989). Updating the inverse of a matrix, SIAM Review, 31, 221-239. https://doi.org/10.1137/1031049
- Lee, Y. and Oh, H.-S. (2014). A new sparse variable selection via random-effect model, Journal of Multivariate Analysis, 125, 89-99. https://doi.org/10.1016/j.jmva.2013.11.016
- Park, S. (2007). Regression Analysis, 3/e, Minyoungsa, Seoul.
- Pinheiro, J. C. and Bates, D. M. (2000). Mixed Effects Model in S and S-PLUS, Springer, New York.
- Sohn, S., Chang, I. and Moon, H. (2007). Random effects Weibull regression model for occupational lifetime, European Journal of Operational Research, 179, 124-131. https://doi.org/10.1016/j.ejor.2006.03.008
- Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model, Springer, New York.
- Yoon, K. and Sohn, S. Y. (2007). Finding the optimal CSP inventory level for multi-echelon system in Air Force using random effects regression model, European Journal of Operational Research, 180, 1076-1085. https://doi.org/10.1016/j.ejor.2006.05.006
- Zhu, J. and Hastie, T. (2004). Classification of gene microarrays by penalized logistic regression, Biostatistics, 5, 427-443. https://doi.org/10.1093/biostatistics/kxg046