DOI QR코드

DOI QR Code

Bio-Equivalence Analysis using Linear Mixed Model

선형혼합모형을 활용한 생물학적 동등성 분석

  • An, Hyungmi (Department of Statistics, Seoul National University) ;
  • Lee, Youngjo (Department of Statistics, Seoul National University) ;
  • Yu, Kyung-Sang (Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital)
  • 안형미 (서울대학교 통계학과) ;
  • 이영조 (서울대학교 통계학과) ;
  • 유경상 (서울대학교 의과대학 임상약리학교실/서울대학교병원 임상약리학과)
  • Received : 2015.03.19
  • Accepted : 2015.03.30
  • Published : 2015.04.30

Abstract

Linear mixed models are commonly used in the clinical pharmaceutical studies to analyze repeated measures such as the crossover study data of bioequivalence studies. In these models, random effects describe the correlation between repeated outcomes and variance-covariance matrix explain within-subject variabilities. Bioequivalence analysis verifies whether a 90% confidence interval for geometric mean ratio of Cmax and AUC between reference drug and test drug is included in the bioequivalence margin [0.8, 1.25] performed using linear mixed models with period, sequence and treatment effects as fixed and sequence nested subject effects as random. A Levofloxacin study is referred to for an example of real data analysis.

생동성 시험과 같은 임상약리학분야의 연구는 일반적으로 한 개체 내에서 반복하여 측정된 자료구조를 사용하므로 선형혼합모형을 이용하여 분석하는 것이 보편적이다. 이러한 모형에서 랜덤효과는 개체 내 관측 자료 사이의 상관관계를 설명하고, 공분산행렬은 개체-내 변동을 설명한다. 생동성 분석은 두 약물의 약동학적 변수인 Cmax와 AUC의 기하평균비에 대한 90% 신뢰구간이 동등성 한계인 [0.8, 1.25] 범위에 드는지 알아보는 분석으로, 고정효과에는 시기, 순서군, 치료효과를, 랜덤효과에는 개체효과를 가지는 선형혼합모형을 이용하여 분석한다. 이러한 분석이 적용된 실제 예를 살펴보기 위하여 레보플록사신 연구의 자료를 활용하였다.

Keywords

References

  1. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.
  2. Chung, I., Yoon, S., Yi, S., Kim, B.-H., Yim, S.-V., Jang, I.-J. and Lee, H. (2014). A bioequivalence study of two levofloxacin tablets in healthy male subjects,Traditional and Clinical Pharmacology, 22, 102-105. https://doi.org/10.12793/tcp.2014.22.2.102
  3. MFDS (2014).Guideline for the Drug Equivalence Test (Notification No. 2014-188, 2014.11.24) (Korean).
  4. Kang, S. (2008). Why is 90% confidence interval used when confidence interval approach is used for testing equivalence?, The Korean Journal of Applied Statistics, 21, 867-873. https://doi.org/10.5351/KJAS.2008.21.5.867
  5. Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion), Journal of the Royal Statistical Society B, 58, 619-656.
  6. Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data, Biometrics, 38, 963-974. https://doi.org/10.2307/2529876
  7. Schuirmann, D. J. (1987). A comparison of the two one-sided test procedure and the power approach for assessing the equivalence of average bioavailability, Journal of Pharmacokinetics and Biopharmaceutics, 15, 657-680. https://doi.org/10.1007/BF01068419