• 제목/요약/키워드: penalized maximum likelihood estimator

검색결과 6건 처리시간 0.018초

Maximum penalized likelihood estimation for a stress-strength reliability model using complete and incomplete data

  • Hassan, Marwa Khalil
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.355-371
    • /
    • 2018
  • The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.

A correction of SE from penalized partial likelihood in frailty models

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.895-903
    • /
    • 2009
  • The penalized partial likelihood based on restricted maximum likelihood method has been widely used for the inference of frailty models. However, the standard-error estimate for frailty parameter estimator can be downwardly biased. In this paper we show that such underestimation can be corrected by using hierarchical likelihood. In particular, the hierarchical likelihood gives a statistically efficient procedure for various random-effect models including frailty models. The proposed method is illustrated via a numerical example and simulation study. The simulation results demonstrate that the corrected standard-error estimate largely improves such bias.

  • PDF

희소행렬 계산과 혼합모형의 추론 (Sparse Matrix Computation in Mixed Effects Model)

  • 손원;박용태;김유경;임요한
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.281-288
    • /
    • 2015
  • 본 연구에서는 혼합모형의 추론을 위한 벌점-최대우도추정량의 빠른 계산절차를 제안하다. 제안된 절차는 벌점-최대우도추정량을 위한 추정방정식에서 헷시안 행렬을 화살촉형태를 지닌 희소행렬을 통하여 근사 시킴으로써 계산속도의 향상을 가져왔다. 두 가지 가상실험을 통하여 제안된 근사식을 사용함으로써 얻게되는 계산시간의 감소와 동시에 이를 위하여 지불하여야 하는 근사오차에 대하여 살펴보았다.

A data-adaptive maximum penalized likelihood estimation for the generalized extreme value distribution

  • Lee, Youngsaeng;Shin, Yonggwan;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권5호
    • /
    • pp.493-505
    • /
    • 2017
  • Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum penalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework. The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are compared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation show that the proposed methods work well for bias and mean squared error. The methods are applied to Blackstone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments estimator, and existing MPLEs.

준모수적 방법을 이용한 랜덤 절편 로지스틱 모형 분석 (Semiparametric Approach to Logistic Model with Random Intercept)

  • 김미정
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1121-1131
    • /
    • 2015
  • 의학이나 사회과학에서 이진 데이터 분석 시 랜덤 절편(random intercept)을 갖는 로지스틱 모형이 유용하게 쓰이고 있다. 지금까지는 이러한 로지스틱 모형에서 랜덤 절편이 정규분포와 같은 모수 모형(parametric model)을 따른다는 가정과 설명변수와 랜덤 절편이 독립이라는 가정 하에 실행된 데이터 분석이 전반적이었다. 그러나 이러한 두 가지 가정은 다소 무리가 있다. 이 연구에서는 설명 변수와 랜덤 절편의 독립성을 가정하지 않고, 비모수 랜덤 절편을 따르는 로지스틱 모형의 방법론을 기존에 널리 쓰인 방법과 비교하여 설명하도록 한다. 케냐의 초등학생들의 영양 섭취 및 질병의 발병을 조사한 데이터에 이 방법을 적용하였다.