DOI QR코드

DOI QR Code

전기방사법을 이용하여 제조된 Sb-Doped SnO2 투명전도막의 전기적 및 광학적 특성

Electrical and Optical Properties of Sb-Doped SnO2 Transparent Conductive Films Fabricated by Using Electrospinning

  • 안하림 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과) ;
  • 이태근 (서울과학기술대학교 신소재공학과)
  • An, Ha-Rim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Tae-Kum (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2015.03.20
  • 심사 : 2015.03.28
  • 발행 : 2015.04.27

초록

Sb-doped $SnO_2$(ATO) thin films were prepared using electrospinning. To investigate the optimum properties of the electrospun ATO thin films, the deposition numbers of the ATO nanofibers(NFs) were controlled to levels of 1, 2, 4, and 6. Together with the different levels of deposition number, the structural, chemical, morphological, electrical, and optical properties of the nanofibers were investigated. As the deposition number of the ATO NFs increased, the thickness of the ATO thin films increased and the film surfaces were gradually densified, which affected the electrical properties of the ATO thin films. 6 levels of the ATO thin film exhibited superior electrical properties due to the improved carrier concentration and Hall mobility resulting from the increased thickness and surface densification. Also, the thickness of the samples had an effect on the optical properties of the ATO thin films. The ATO thin films with 6 deposited levels displayed the lowest transmittance and highest haze. Therefore, the figure of merit(FOM) considering the electrical and optical properties showed the best value for ATO thin films with 4 deposited levels.

키워드

참고문헌

  1. R. Das and S. Ray, J. Phys. D: Appl. Phys., 36, 152 (2003). https://doi.org/10.1088/0022-3727/36/2/312
  2. S. K. Park, J. I. Han, W. K. Kim and M. G. Kwak, Thin Solid Films, 397, 49 (2001). https://doi.org/10.1016/S0040-6090(01)01489-4
  3. S. K. Hau, H. L. Yip, J. Zou and A. Y. Jen, Org. Electron., 10, 1401 (2009). https://doi.org/10.1016/j.orgel.2009.06.019
  4. S. Calnan and A. N. Tiwari, Thin Solid Films, 518, 1839 (2010). https://doi.org/10.1016/j.tsf.2009.09.044
  5. T. R. Giraldi, M. T. Escote, M. I. B. Bernardi, V. Bouquet, E. R. Leite, E. Longo and J. A. Varela, J. Electroceram., 13, 159 (2004). https://doi.org/10.1007/s10832-004-5093-z
  6. K. S. Kim, S. Y. Yoon, W. J. Lee and K. H. Kim, Surf. Coat. Technol., 138, 229 (2001). https://doi.org/10.1016/S0257-8972(00)01114-2
  7. F. Chen, N. Li, Q. Shen, C. Wang and L. Zhang, Sol. Energy Mater. Sol. Cells, 105, 153 (2012). https://doi.org/10.1016/j.solmat.2012.05.032
  8. J. Montero, C. Guillen and J. Herrero, Sol. Energy Mater. Sol. Cells, 95, 2113 (2011). https://doi.org/10.1016/j.solmat.2011.03.009
  9. D. C. Woo, C. Y. Koo, H. C. Ma and H. Y. Lee, Trans. Electr. Electron. Mater., 13, 241 (2012). https://doi.org/10.4313/TEEM.2012.13.5.241
  10. J. W. Lim, B. Y. Jeong, H. G. Yoon, S. N. Lee and J. H. Kim, J. Nanosci. Nanotechnol., 12, 1675 (2012). https://doi.org/10.1166/jnn.2012.4622
  11. D. Zhang, L. Tao, Z. Deng, J. Zhang and L. Chen, Mater. Chem. Phys., 100, 275 (2006). https://doi.org/10.1016/j.matchemphys.2005.12.043
  12. S. Ramakrishna, K. Fujihara, W. -E. Teo, T. Yong, Z. Ma and R. Ramaseshan, Mater. Today, 9, 40 (2006).
  13. N. Leon-Brito, A. Melendez, I. Ramos, N. Pinto and J. J. Santiago-Aviles, J. Phys. Conf. Ser., 61, 683 (2007). https://doi.org/10.1088/1742-6596/61/1/137
  14. B. R. Koo and H. J. Ahn, Ceram. Int., 40, 4375 (2014). https://doi.org/10.1016/j.ceramint.2013.08.108
  15. E. Elangovan, M. P. Singh and K. Ramamurthi, Mater. Sci. Eng. B, 113, 143 (2004). https://doi.org/10.1016/S0921-5107(04)00385-X
  16. Y. G. Her, J. Y. Wu, Y. R. Lin and S. Y. Tsai, Appl. Phys. Lett., 89, 043115 (2006). https://doi.org/10.1063/1.2235925
  17. T. H. Kao, J. Y. Chen, C. H. Chiu, C. W. Huang and W. W. Wu, Appl. Phys. Lett., 104, 111909 (2014). https://doi.org/10.1063/1.4869355
  18. X. Lu, Y. Chang, M. Xu and B. Peng, Adv. Mater. Res., 936, 439 (2014). https://doi.org/10.4028/www.scientific.net/AMR.936.439
  19. E. Elangovan, M. P. Singh and K. Ramamurthi, Mater. Sci. Eng. B, 113, 143 (2004). https://doi.org/10.1016/S0921-5107(04)00385-X
  20. A. Jain, P. Sagar and R. M. Mehra, Mater. Sci-Poland, 25, 1 (2007).
  21. W. J. Jeong and G. C. Park, Sol. Energy Mater. Sol. Cells, 65, 37 (2001). https://doi.org/10.1016/S0927-0248(00)00075-1
  22. H. R. An, H. J. Ahn and J. W. Park, Ceram. Int., 41, 2253 (2015). https://doi.org/10.1016/j.ceramint.2014.10.028
  23. J. Liu, A. W. Hains, J. D. Servaites, M. A. Ratner and T. J. Marks, Chem. Mater., 21, 5258 (2009). https://doi.org/10.1021/cm902265n