DOI QR코드

DOI QR Code

고상 성장법을 이용한 실리콘 태양전지 에미터 형성 연구

A Study on Solid-Phase Epitaxy Emitter in Silicon Solar Cells

  • 김현호 (고려대학교 신소재공학과) ;
  • 지광선 (LG전자 기술원) ;
  • 배수현 (고려대학교 신소재공학과) ;
  • 이경동 (고려대학교 신소재공학과) ;
  • 김성탁 (고려대학교 신소재공학과) ;
  • 박효민 (고려대학교 신소재공학과) ;
  • 이헌민 (LG전자 기술원) ;
  • 강윤묵 (고려대학교 그린스쿨대학원 에너지환경정책기술학과) ;
  • 이해석 (고려대학교 신소재공학과) ;
  • 김동환 (고려대학교 신소재공학과)
  • Kim, Hyunho (Department of Materials Science and Engineering, Korea University) ;
  • Ji, Kwang-Sun (Solar Energy Team, Materials and Components R&D Laboratory, LG Electronics) ;
  • Bae, Soohyun (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Kyung Dong (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Seongtak (Department of Materials Science and Engineering, Korea University) ;
  • Park, Hyomin (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Heon-Min (Solar Energy Team, Materials and Components R&D Laboratory, LG Electronics) ;
  • Kang, Yoonmook (KU.KIST Green School, Graduate School of Energy-Environment Policy and Technology, Korea University) ;
  • Lee, Hae-Seok (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Donghwan (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2015.08.18
  • 심사 : 2015.08.24
  • 발행 : 2015.09.30

초록

We suggest new emitter formation method using solid-phase epitaxy (SPE); solid-phase epitaxy emitter (SEE). This method expect simplification and cost reduction of process compared with furnace process (POCl3 or BBr3). The solid-phase epitaxy emitter (SEE) deposited a-Si:H layer by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) on substrate (c-Si), then thin layer growth solid-phase epitaxy (SPE) using rapid thermal process (RTP). This is possible in various emitter profile formation through dopant gas ($PH_3$) control at deposited a-Si:H layer. We fabricated solar cell to apply solid-phase epitaxy emitter (SEE). Its performance have an effect on crystallinity of phase transition layer (a-Si to c-Si). We confirmed crystallinity of this with a-Si:H layer thickness and annealing temperature by using raman spectroscopy, spectroscopic ellipsometry and transmission electron microscope. The crystallinity is excellent as the thickness of a-Si layer is thin (~50 nm) and annealing temperature is high (<$900^{\circ}C$). We fabricated a 16.7% solid-phase epitaxy emitter (SEE) cell. We anticipate its performance improvement applying thin tunnel oxide (<2nm).

키워드

참고문헌

  1. Johannes Eisenlohr, BenjaminG.Lee, JanBenick, FrankFeldmann, Marion Drie$\ss$en, NenaMilenkovic, BenediktBlasi, JanChristoph Goldschmidt, Martin Hermle, "Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells", Solar Energy Materials and Solar Cells, in press, 2015.
  2. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden and W. M. M. Kessels, "Surface Passivation of High-efficiency Silicon Solar Cells by Atomic-layer-deposited $Al_2O_3$", Progress in Photovoltaics: Research and Applications, 16, pp. 461-466, 2008. https://doi.org/10.1002/pip.823
  3. Yinan Zhang, Nicholas Stokes, Baohua Jia, Shanhui Fan and Min Gu, "Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss", SCIENTIFIC REPORTS, 4, pp. 4939-4944, 2014.
  4. M.A.Green, "SOLAR CELLS", Prentice-Hall, 1982.
  5. P. Negrini, D. Nobili and S. Solmi, "Kinetics of Phosphorus Predeposition in Silicon Using POCl3", Journal of The Electrochemical Society, 122, 9, pp. 1254-1260, 1975. https://doi.org/10.1149/1.2134437
  6. J. Bultman, I. Cesar, B. Geerlings, Y. Komatsu and W. Sinke, "Methods of Emitter Formation for Crystalline Silicon Solar Cells," Photovoltaics International, Petten, 2010.
  7. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate and D. C. Jacobson, "Heat of crystallization and melting point of amorphous silicon", Applied Physics Letters, 42, pp. 698-700, 1983. https://doi.org/10.1063/1.94077
  8. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate and D. C. Jacobson, "Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion implantation", Journal of Applied Physics, 57, pp. 1795-1804, 1985. https://doi.org/10.1063/1.334406
  9. G. L. Olsen and J. A. Roth, "Kinetics of solid phase crystallization in amorphous silicon", Materials Science Reports, 3, 1, pp. 1-77, 1988. https://doi.org/10.1016/S0920-2307(88)80005-7
  10. L. Csepregi, J. W. Mayer and T. W. Sigmon, "Chaneling effect measurements of the recrystallization of amorphous Si layers on crystal Si", Physics Letters A, 54, 2, pp.157-158, 1975. https://doi.org/10.1016/0375-9601(75)90847-6
  11. L. Csepregi, J. W. Mayer and T. W. Sigmon, "Regrowth behavior of ion‐implanted amorphous layers on <111> silicon", Applied Physics Letters, 29, 2, pp. 92-93, 1976. https://doi.org/10.1063/1.88980
  12. J. A. Roth and C. L. Anderson, "Silicon epitaxy by solid-phase crystallization of deposited amorphous films", Applied Physics Letters. 31, 10, pp. 689-691, 1977. https://doi.org/10.1063/1.89506
  13. Jai Singh, "Optical Properties of Condensed Matter and Applications", John Wiley & Sons, Ltd, pp. 49-60, 2006.
  14. M. H. Brodsky, "Light Scattering in Solid 1", Springer-Verlag, Berlin, pp. 205-251, 1975.
  15. Z. Iqbal and S. Veprek, "Raman scattering from hydrogenated microcrystalline and amorphous silicon", Journal of Physics C: Solid State Physics, 15, 2, pp. 377-392, 1982. https://doi.org/10.1088/0022-3719/15/2/019
  16. V. Nayar, "Spectroscopic ellipsometry of epitaxial Si[100] surfaces", Applied Physics Letters, 61, 1, pp. 1304-1306, 1992. https://doi.org/10.1063/1.107573
  17. R.M.A. Azzam and N.M. Bashara, "Ellipsometty and Polarized LightNorth-Holland", Amsterdam, 1977.
  18. Kwang-sun Ji, Junghoon Choi, Hyunjin Yang, Heon-Min Lee, Donghwan Kim, "A study of crystallinity in amorphous Si thin films for silicon heterojunction solar cells", Solar Energy Materials and Solar Cells, 95, 1, pp. 203-206, 2011. https://doi.org/10.1016/j.solmat.2010.04.056
  19. D. Macdonald, L. J. Geerligs, "Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon", Applied Physics Letters, 85, 18, pp. 4061-4063, 2004. https://doi.org/10.1063/1.1812833
  20. K. Graff, "Metal Impurities in Silicon Device Fabrication", Springer Series in Materials Science, 2nd edition, Springer- Verlag, Berlin, 2000.
  21. Frank Feldmann, Martin Bivour, Christian Reichel, Heiko Steinkemper, Martin Hermle, Stefan W Glunz, "Tunnel oxide passivated contacts as an alternative to partial rear contacts", Solar Energy Materials and Solar Cells, 131, pp. 46-50, 2014. https://doi.org/10.1016/j.solmat.2014.06.015
  22. Frank Feldmann, Martin Bivour, Christian Reichel, Martin Hermle, Stefan W. Glunz, "Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics", Solar Energy Materials and Solar Cells, 120, pp. 270-274, 2014. https://doi.org/10.1016/j.solmat.2013.09.017