DOI QR코드

DOI QR Code

개회로 파장 변조 분광법과 에디 공분산 방법으로 논에서 관측된 CH4 플럭스 자료의 보정

Corrections on CH4 Fluxes Measured in a Rice Paddy by Eddy Covariance Method with an Open-path Wavelength Modulation Spectroscopy

  • Kang, Namgoo (Korea research Institute of Standards and Science) ;
  • Yun, Juyeol (Complex Systems Science Lab., Department of Landscape Architecture and Rural Systems Engineering, Seoul National University) ;
  • Talucder, M.S.A. (Interdisciplinary Program in Agricultural & Forest Meteorology, Seoul National University) ;
  • Moon, Minkyu (National Center for AgroMeteorology) ;
  • Kang, Minseok (National Center for AgroMeteorology) ;
  • Shim, Kyo-Moon (National Academy of Agricultural Science) ;
  • Kim, Joon (Complex Systems Science Lab., Department of Landscape Architecture and Rural Systems Engineering, Seoul National University)
  • 투고 : 2014.10.28
  • 심사 : 2014.12.01
  • 발행 : 2015.03.30

초록

$CH_4$$CO_2$$N_2O$와 더불어 중요한 온실가스로서 지속적이고도 체계적인 감시가 요구된다. 에디 공분산 기술 기반의 $CO_2$ 플럭스의 관측은 이미 세계적으로 관측망이 구축되어 관측부터 자료처리에 이르기까지 모든 과정이 표준화되어 있을 뿐 아니라 체계적으로 잘 문서화되어 있다. 그러나 미량 기체인 $CH_4$의 경우, 레이저 기반의 고속반응 분광계를 필요로 할 뿐 아니라, 이에 수반되는 플럭스 자료의 처리 과정이 표준화되어 있지 않다. 본 연구 노트에서는 최근에 상용화된 개회로 파장 변조 분광계를 사용하여 에디 공분산 방법으로 논에서 관측한 $CH_4$ 플럭스 결과를 보고하였다. 모내기 전과 직후의 각 5일간 연속 관측한 자료를 KoFlux 프로토콜에 따라 상용화된 $EddyPro^{TM}$ 프로그램을 사용하여 자료를 처리하였다. 이 후처리 과정에서 세 가지 주요 보정, (1) 주파수 반응 보정, (2) 공기 밀도 보정, (3) 분광 보정의 효과를 정량화 하였다. 보정 효과는 밤과 낮에 따라 차이를 보였고, 메탄플럭스가 작을수록 보정 효과가 컸다. 전반적으로 보정 후에 메탄 플럭스는 평균 20-25% 정도 증가하였다. 국가농림기상센터(www.ncam.kr)에서는 분광 보정과 빈 자료 메우기를 포함한 $CH_4$플럭스 자료 처리가 포함된 업데이트된 KoFlux 프로그램을 일반 사용자에게 제공할 예정이다.

$CH_4$ is a trace gas and one of the key greenhouse gases, which requires continuous and systematic monitoring. The application of eddy covariance technique for $CH_4$ flux measurement requires a fast-response, laser-based spectroscopy. The eddy covariance measurements have been used to monitor $CO_2$ fluxes and their data processing procedures have been standardized and well documented. However, such processes for $CH_4$ fluxes are still lacking. In this note, we report the first measurement of $CH_4$ flux in a rice paddy by employing the eddy covariance technique with a recently commercialized wavelength modulation spectroscopy. $CH_4$ fluxes were measured for five consecutive days before and after the rice transplanting at the Gimje flux monitoring site in 2012. The commercially available $EddyPro^{TM}$ program was used to process these data, following the KoFlux protocol for data-processing. In this process, we quantified and documented the effects of three key corrections: (1) frequency response correction, (2) air density correction, and (3) spectroscopic correction. The effects of these corrections were different between daytime and nighttime, and their magnitudes were greater with larger $CH_4$ fluxes. Overall, the magnitude of $CH_4$ flux increased on average by 20-25% after the corrections. The National Center for AgroMeteorology (www.ncam.kr) will soon release an updated KoFlux program to public users, which includes the spectroscopic correction and the gap-filling of $CH_4$ flux.

키워드

참고문헌

  1. Baldocchi, D., Eva Falge, Lianhong Gu, Richard Olson, David Hollinger, Steve Running, Peter Anthoni, Ch Bernhofer, Kenneth Davis, Robert Evans, Jose Fuentes, Allen Goldstein, Gabriel Katul, Beverly Law, Xuhui Lee, Yadvinder Malhi, Tilden Meyers, William Munger, Walt Oechel, K. T. Paw, Kim Pilegaard, H. P. Schmid, Riccardo Valentini, Shashi Verma, Timo Vesala, Kell Wilson, and Steve Wofsy, 2001: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82, 2415-2434. https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
  2. Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., and Kelly, N. M., 2012. The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agricultural and Forest Meteorology, 153, 177-187. https://doi.org/10.1016/j.agrformet.2011.04.013
  3. Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge, C., Langenfelds, R. L., Lathiere, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C., and White, J., 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439-443. https://doi.org/10.1038/nature05132
  4. Burba, G., 2013: Eddy covariance method for scientific, industrial, agricultural and regulatory applications: A field book on measuring ecosystem gas exchange and areal emission rates. LI-COR Biosciences, Lincoln, NE, USA, 331.
  5. Choi, T., J. Kim, and J. I. Yun, 1999: On Using the Eddy Covariance Method to Study the Interaction between Agro-Forest Ecosystems and the Atmosphere. Korean Journal of Agricultural and Forest Meteorology, 1, 60-71. (in Korean with English abstract)
  6. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., and Others, 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2, in: Climate Change 2007. The Physical Science Basis.
  7. Hong, J., and J. Kim, 2002: On Processing Raw Data from Micrometeorological Field Experiments. Korean Journal of Agricultural and Forest Meteorology, 4(2), 119-126. (in Korean with English abstract)
  8. Hong, J., H. Kwon, J.-H. Lim, Y.-H. Byun, J. Lee, and J. Kim, 2009: Standardization of KoFlux Eddy-Covariance Data Processing. Korean Journal of Agricultural and Forest Meteorology, 11(1), 19-26. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.1.019
  9. IPCC. 2013, Climate change, 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
  10. Iwata, H., Y. Kosugi, K. Ono, M. Mano, A Sakabe, A. Miyata, and K. Takahashi, 2013: Cross-Validation of Open-Path and Closed-Path Eddy-Covariance Techniques for Observing Methane Fluxes. Boundary-Layer Meteorology, 151(1), 95-118. https://doi.org/10.1007/s10546-013-9890-2
  11. Kim, J., S. B. Verma, N. Shurpali, Y. Harazono, A. Miyata, J.-I. Yun, B. Tanner, and J.-W. Kim, 2000: Diurnal and seasonal variations in $CH_4$ emission from various freshwater wetlands, Non-$CO_2$ Greenhouse Gases: Scientific nderstanding, Control and Implementation, J. van Ham et al. (Eds), Kluwer Academic Publishers, 131-136pp.
  12. Kim, J., D. Lee, J. Hong, S. Kang, S.-J. Kim, S.-K. Moon, J.-H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B. Lee, B.-L. Lee, and S. Kim, 2006: HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecological Research, 21(6), 881-889. https://doi.org/10.1007/s11284-006-0055-3
  13. Korea Global Atmosphere Watch Center, 2012: Report of Global Atmosphere Watch. Korea Metrorological Admistration, 27pp.
  14. LI-COR Inc., 2013: LI-7700 Open Path CH4 Analyzer Instruction Manual. LI-COR, 4647 Superior Street, Inc. Lincoln, NE, USA.
  15. Massman, W. J., and J. P. Tuovinen, 2006: An Analysis and Implications of Alternative Methods of Deriving the Density (WPL) Terms for Eddy Covariance Flux Measure-ments. Boundary-Layer Meteorology, 121(2), 221-227. https://doi.org/10.1007/s10546-006-9070-8
  16. Min, S.-H., K.-M. Shim, Y.-S. Kim, M.-P. Jung, S.-C. Kim, and K.-H. So, 2013: Seasonal Variation of Carbon Dioxide and Energy Fluxes During the Rice Cropping Season at Rice-barley Double Cropping Paddy Field of Gimje. Korean Journal of Agricultural and Forest Meteorology, 15(4), 273-281. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.4.273
  17. Moncrieff, J. B., J. M. Massheder, H. D. Bruin, J. Elbers, T. Friborg, B. Heusinkveld, P. Kabat, S. Scott, H. Soegaard, and A. Verhoef, 1997: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188-189, 589-611. https://doi.org/10.1016/S0022-1694(96)03194-0
  18. Greenhouse Gas Inventroy & Research Center of Korea, 2013, 2013:National Greenhouse Gas Inventroy Report of Korea
  19. Wassmann, R., H. U. Neue, R. S. Lantin, K. Makarim, N. Chareonsilp, L. V. Buendia, and H. Rennenberg, 2000: Characterization of Methane Emissions from Rice Fields in Asia. II. Differences among Irrigated, Rainfed, and Deepwater Rice. Nutrient Cycling in Agroecosystems. 58(1-3), 13-22. https://doi.org/10.1023/A:1009822030832
  20. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100. https://doi.org/10.1002/qj.49710644707

피인용 문헌

  1. Estimation and Mapping of Methane Emission from Rice Paddies in Gyunggi-do Using the Modified Water Management Scaling Factor vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.320
  2. Interannual variations in methane emission from an irrigated rice paddy caused by rainfalls during the aeration period vol.223, 2016, https://doi.org/10.1016/j.agee.2016.02.032
  3. Comparison of CH4 Emission by Open-path and Closed Chamber Methods in the Paddy Rice Fields vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.507