DOI QR코드

DOI QR Code

기후변화에 따른 작물의 수량 예측을 위한 시스템 요구도 분석

Requirement Analysis of a System to Predict Crop Yield under Climate Change

  • 김준환 (농촌진흥청 국립식량과학원 답작과) ;
  • 이충근 (농촌진흥청 국립식량과학원 기획조정과) ;
  • 김현애 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 이변우 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 김광수 (서울대학교 농업생명과학대학 식물생산과학부)
  • Kim, Junhwan (Rice Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Chung Kuen (Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Hyunae (Department of Plant Science, College of Agriculture and Life Science, Seoul National University) ;
  • Lee, Byun Woo (Department of Plant Science, College of Agriculture and Life Science, Seoul National University) ;
  • Kim, Kwang Soo (Department of Plant Science, College of Agriculture and Life Science, Seoul National University)
  • 투고 : 2014.09.11
  • 심사 : 2014.11.25
  • 발행 : 2015.03.30

초록

온실가스 증가로 인한 기후변화는 농업 생태계에 다양한 경로로 영향을 미쳐 작물 생산에 영향을 미칠 수 있다. 또한, 농업 생태계는 생물, 기후, 토양 및 경제 환경이 서로 복잡하게 연결되어 있어 개별 분야에 초점을 맞춘 적응 대책들은 농업 부문 내 다른 영역에 의도하지 않은 파급 효과를 초래할 수 있다. 기후변화 조건에서 복잡한 농업 생태계의 상호작용을 고려하면서 최적의 작물 생산성을 유지하기 위해 개별분야별 모델을 연계한 통합 예측 시스템 구축이 요구된다. 이러한 통합시스템을 구축하기 위해서는 단계적 접근이 필요하다. 국내에서 사용되고 있는 모델들은 통합시스템에 적합하도록 설계된 것이 아니기 때문에, 이를 위한 모델의 재개발이 필요하다. 농업생태계 감시를 위한 수퍼사이트와 위성사이트의 구축을 통해 장기간 작물 생육 자료를 확보하고 이를 개별 분야 모델의 개선에 활용할 수 있다. 모델 대상의 추상화와 상속과정을 통해 보다 유연한 형태의 통합 모델의 모듈 개발이 가능할 것이다. 마지막으로, 농업분야는 사회경제적인 요인에 지대한 영향을 받기 때문에, 농업생산과 경제분야가 연계될 수 있는 통합 시스템 구축이 바람직 할 것 이다.

Climate change caused by elevated greenhouse gases would affect crop production through different pathways in agricultural ecosystems. Because an agricultural ecosystem has complex interactions between societal and economical environment as well as organisms, climate, and soil, adaptation measures in response to climate change on a specific sector could cause undesirable impacts on other sectors inadvertently. An integrated system, which links individual models for components of agricultural ecosystems, would allow to take into account complex interactions existing in a given agricultural ecosystem under climate change and to derive proper adaptation measures in order to improve crop productivity. Most of models for agricultural ecosystems have been used in a separate sector, e.g., prediction of water resources or crop growth. Few of those models have been desiged to be connected to other models as a module of an integrated system. Threfore, it would be crucial to redesign and to refine individual models that have been used for simulation of individual sectors. To improve models for each sector in terms of accuracy and algorithm, it would also be needed to obtain crop growth data through construction of super-sites and satellite sites for long-term monitoring of agricultural ecosystems. It would be advantageous to design a model in a sector from abstraction and inheritance of a simple model, which would facilitate development of modules compatible to the integrated prediction system. Because agricultural production is influenced by social and economical sectors considerably, construction of an integreated system that simulates agricultural production as well as economical activities including trade and demand is merited for prediction of crop production under climate change.

키워드

참고문헌

  1. Ainsworth, E. A., 2008: Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology 14(7), 1642-1650. https://doi.org/10.1111/j.1365-2486.2008.01594.x
  2. Asseng S., F. Ewert, C. Rosenzweig, J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. J. Thorburn, R. P. Rtter, D. Cammarano, N. Brisson, B. Basso, P. Martre, P. K. Aggarwal, C. Angulo, P. Bertuzzi, C. Biernath, A. J. Challinor, J. Doltra, S. Gayler, R. Goldberg, R. Grant, L. Heng, J. Hooker, L. A. Hunt, J. Ingwersen, R. C. Izaurralde, K. C. Kersebaum, C. Mller, S. Naresh Kumar, C. Nendel, G. O'Leary, J. E. Olesen, T. M. Osborne, T. Palosuo, E. Priesack, D. Dipoche, M. A. Semenov, I. Shcherbak, P. Steduto, C. Stckle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, M. Travasso, K. Waha, D. Wallach, J. W. White, J. R. Williams, and J. Wolf, 2013: Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3, 827-832. https://doi.org/10.1038/nclimate1916
  3. Asseng, S., P. D. Jamieson, B. Kimball, P. Pinter, K. Sayre, J. W. Bowden, and S. M. Howden, 2004: Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric $CO_2$. Field Crops Research 85(2-3), 85-102. https://doi.org/10.1016/S0378-4290(03)00154-0
  4. Bouman, B. A. M, M. J. Kropff, T. P. Tuong, M. C. S. Wopereis, H. F. M. ten Berge, H. H. van Laar, 2001: ORYZA2000 : modeling lowland rice (1st ed.). International Rice Research Institute and Wageningen University and Research Centre, 235pp.
  5. Brisson, N., B. Mary, D. Ripoche, M. H. Jeuffroy, F. Ruget, B. Nicoullaud, P. Gate, F. Devienne-Barret, R. Antonioletti, C. Durr, G. Richard, N. Beaudoin, S. Recous, X. Tayot, D. Plenet, P. Cellier, J. M. Machet, J. M. Meynard, and R. Delecolle, 1998: STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18(5-6), 311-346. https://doi.org/10.1051/agro:19980501
  6. Chung, S. O., 2010: Simulating evapotranspiration and yield response of rice to climate change using FAO-AquaCrop. Journal of the Korean Sciety of Agricultural Engineers 52(3), 57-64. (in Korean with English abstract)
  7. Cui, R. X., and B.W. Lee, 2002: Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice. Korean Journal of Crop Science 47(5), 390-394.
  8. Elliott, J., D. Kelly, N. Best, M. Wilde, M. Glotter, and I. Foster, 2013: The parallel system for integrating impact models and sectors (pSIMS). Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery (XSEDE '13) 21, 1-8.
  9. FAO Land and Water Development Division, 1996: Agro-Ecological Zoning Guidelines. Food and Agriculture Organization of the United Nations.
  10. Fischer, G., M. Shah, F. N. Tubiello, and H. V. Velhuizen, 2005: Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Philosophical Transactions of the Royal Society B 360(1463), 2067-2083. https://doi.org/10.1098/rstb.2005.1744
  11. Glotter, M., J. Elliott, D. McInerney, N. Best, I. Foster, and E. J. Moyer, 2014: Evaluating the utility of dynamical downscaling in agricultural impacts projections. Proceedings of the National Academy of Sciences of the United States of America 111(14), 8776-8781. https://doi.org/10.1073/pnas.1314787111
  12. Gruber, T. R., 1993. A translation approach to portable ontology specifications. Knowledge Acquistion 5(2), 199-220. https://doi.org/10.1006/knac.1993.1008
  13. Howden, S. M., J. F. Soussana, F. N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke, 2007: Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America 140(50), 19691-19696.
  14. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. C. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18(3-4), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  15. Keating, B. A., R. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson, D. Holzworth, N. I. Huth, J. N. G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J. P. Dimes, M. Silburn, E. Wang, S. Brown, K. L. Bristow, S. Asseng, S. Chapman, R. L. McCown, D. M. Freebairn, and C. J. Smith, 2003: An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18(3-4), 267-288. https://doi.org/10.1016/S1161-0301(02)00108-9
  16. Kim, D. J., J. H. Roh, J. G. Kim, and J. I. Yun, 2013: The Influence of shifting planting date on cereal grains production under the projected climate change. Korean Journal of Agricultural and Forest Meteorology 15(1), 26-39. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.1.026
  17. Kim, D. J., S. O. Kim, K. H. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP8.5 climate condition. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.3.132
  18. Ku, B. I., M. K. Choi, S. K. Kang, T. S. Park, Y. D. Kim, H. K. Park, J. K. Ko, and B. W. Lee, 2011: Growth and yield in early seasonal cultivation for rice double cropping in Southern Korean Paddy Field. The Journal of the Korean Society of International Agriculture 23(5), 520-530. (in Korean with English abstract)
  19. Leclre D., P. A. Jayet, N. de Noblet-Ducoudr, 2013: Farmlevel autonomous adaptation of European agricultural supply to climate change. Ecological Economics 87, 1-14. https://doi.org/10.1016/j.ecolecon.2012.11.010
  20. Lee, B. W., J. C. Shin, and J. H. Bong, 1991: Impact of climate change induced by the increasing atmospheric CO2 concentration on agroclimatic resources, net primary productivity and rice yield potential in Korea. Korean Journal of Crop Science 36(2), 112-126. (in Korean with English abstract)
  21. Lee, C. K., J. Kim, J. Shon, W. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4), 207-221. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.4.207
  22. Lee, C. Y., Y. C. Kim, H. C. Park, S. M. Kim, I. S. Choi, 1999: Effects of elevated CO2 concentration on photosynthesis, transpiration, stomatal conductance and intercellular CO2 concentration of barley. Journal of Agricultural technology and Development Institute 3(2), 37-41. (in Korean with English abstract)
  23. Lee, J. T., K. M. Shim, H. S. Bang, M. H. Kim, K. K. Kang, Y. E. Na, M. S. Han, and D. B. Lee, 2010: An analysis of changes in rice growth and growth period using climatic tables of 1960s (1931-1960) and 2000s (1971-2000). Journal of Korean Society of Soil Science and Fertilizer 43(6), 1018-1023. (in Korean with English abstract)
  24. Lobell, D. B., B. B. Marshall, C. Tebaldi, M. D. Mastrandrea, W. P. Falcon, and R. L. Naylor, 2008: Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607-610. https://doi.org/10.1126/science.1152339
  25. Long S. P., E. A. Ainsworth, A. D. B. Leakey, J. Nosberger, and D. R. Ort, 2006: Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentration. Science 312, 1918-1921. https://doi.org/10.1126/science.1114722
  26. Majda A. J. and B. Gershgorin, 2011: Improving model fidelity and sensitivity for complex systems through empirical information theory. Proceedings of the National Academy of Sciences of the United States of America 108(25), 10044-10049. https://doi.org/10.1073/pnas.1105174108
  27. Matsui T., O. S. Namuco, L. H. Ziska, and T. Horie, 1997: Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crop Research 51, 213-219. https://doi.org/10.1016/S0378-4290(96)03451-X
  28. Matthews, R. B., M. J. Kropff, T. Horie, D. Bachelet, 1997: Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agricultural Systems 54, 399-425. https://doi.org/10.1016/S0308-521X(95)00060-I
  29. Nguyen, D. N. K. J. Lee, D. I. Kim, A. T. Nguyen, B. W. Lee, 2014: Modeling and validation of high-temperature induced spikelet sterility in rice. Field Crops Research 156, 293-302. https://doi.org/10.1016/j.fcr.2013.11.009
  30. O, S. N., 2005: Effects of climate change on rice economic risk assessment using $CO_2$ doubling scenarios. Journal of the Korean Meteorology Society 41, 507-517.
  31. Olesen J. E., M. Trnka, K. C. Kersebaum, A. O. Skjelvg, B. Seguin, P. Peltonen-Sainio, F. Rossi, J. Kozyra, and F. Micale, 2011: Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy 34(2), 96-112. https://doi.org/10.1016/j.eja.2010.11.003
  32. Parry, M. L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer, 2004: Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change 14(1), 53-67. https://doi.org/10.1016/j.gloenvcha.2003.10.008
  33. Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman, 2004: Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101(27), 9971-9975. https://doi.org/10.1073/pnas.0403720101
  34. Rosenzweig C., J. Elliott, D. Deryng, A. C. Ruange, C. Mller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T. A. M. Pugh, E. Schmid, E. Stehfest, H. Yang, and J. W. Jones, 2013: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America 111(9), 1-6.
  35. Rosenzweig C., J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. Thorburn, J. M. Antle, G. C. Nelson, C. Porter, S. Janssen, S. Asseng, B. Basso, F. Ewert, D. Wallach, G. Baigorria, J., and M. Winter, 2013: The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies. Agricultural and Forest and Meteorology 170, 166-182. https://doi.org/10.1016/j.agrformet.2012.09.011
  36. Rosenzweig, C. and M. L. Parry, 1994: Potential impact of climate change on world food supply. Nature 367, 133-138. https://doi.org/10.1038/367133a0
  37. Schmidhuber J. and F. N. Tubiello, 2007: Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America 104(50), 19703-19708. https://doi.org/10.1073/pnas.0701976104
  38. Seo, H. C., S. K. Kim, Y. S. Lee, and Y. C. Cho, 2006: Geographical shift of quality soybean production area in northern Gyeonggi Province by year 2100. Korean Journal of Agricultural and Forest Meteorology 8(4), 242-249. (in Korean with English abstract)
  39. Seo, Y. H., A. S. Lee, B. O. Cho, A. S. Kang, B. C. Jeong, and Y. S. Jung, 2010: Research Notes: Adaptation study of rice cultivation in Gangwon Province to climate change. Korean Journal of Agricultural and Forest Meteorology 12(2), 143-151. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.2.143
  40. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Climate Change Research 1(2), 121-131. (in Korean with English abstract)
  41. Shim, K. M., S. H. Min, D. B. Lee, G. Y. Kim, H. C. Jeong, S. B. Lee, and K. K. Kang, 2011: Simulation of the effects of the A1B climate change scenario on the potential yield of winter naked barley in Korea. Korean Journal of Agricultural and Forest Meteorology 13(4), 192-203. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2011.13.4.192
  42. Shim, K. M., S. H. Yun, Y. S. Jung, J. T. Lee, and K. H. Hwang, 2002: Impact of recent weather variation on yield components and growth stages of winter barley in Korea. Korean Journal of Agricultural and Forest Meteorology 4(1), 38-48. (in Korean with English abstract)
  43. Shim, K. M., Y. S. Lee, Y. K. Shin, K. Y. Kim, and J. T. Lee, 2005: Changes in simulated rice yields under GCM 2 x $CO_2$ climate change scenarios. Proceedings of the Korean Society of Crop Science Conference 45(2), 12-27. (in Korean with English abstract)
  44. Shin, J. C., C. G. Lee, Y. H. Yoon, and Y. S. Kang, 2000: Impact of climate variability and change on crop productivity. Proceedings of the Korean Society of Crop Science Conference 45(2), 12-27. (in Korean with English abstract)
  45. Smit, B., and M. W. Skinner, 2002: Adaptation options in agriculture to climate change: a typology. Mitigation and Adaptation Strategies for Global Change 7(1), 85-144. https://doi.org/10.1023/A:1015862228270
  46. Stockle, C. O., S. A. Martin, and G. S. Campbell, 1994: CropSyst, a Cropping systems simulation mocel: water/nitrogen budgets and crop yield. Agricultural Systems 46(3), 335-359. https://doi.org/10.1016/0308-521X(94)90006-2
  47. Thorp, K. R., J. W. White, C. H. Porter, G. Hoogenboom, G. S. Nearing, and A. N. French, 2012: Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations. Computers and Electronics in Agriculture 81, 62-71. https://doi.org/10.1016/j.compag.2011.11.008
  48. Tubiello, F. N., C. Rosenzweig, R. A. Goldberg, S. Jagtap, and J. W. Jones, 2002: Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: Wheat, potato, maize, and citrus. Climate Research 20(3), 259-270. https://doi.org/10.3354/cr020259
  49. Tubiello, F. N., M. Donatelli, C. Rosenzweig, and C. O. Stockle, 2000: Effects of climate change and elevated $CO_2$ on cropping systems: model predictions at two Italian locations. European Journal of Agronomy 13(2-3), 179-189. https://doi.org/10.1016/S1161-0301(00)00073-3
  50. Vidal J. P., and S. D. Wade, 2008: Multimodel projections of catchment-scale precipitation regime. Journal of Hydrology 353(1-2), 143-158. https://doi.org/10.1016/j.jhydrol.2008.02.003
  51. White, J. W., G. Hoogenboom, B. A. Kimball, and G. W. Wall, 2011: Methodologies for simulating impacts of climate change on crop production. Field Crops Research 124(3), 357-368. https://doi.org/10.1016/j.fcr.2011.07.001
  52. Williams, J. R., 1990: The erosion-productivity impact calculator (EPIC) model: a case history. Philosophical Transactions: Biological Sciences 329(1255), 421-428. https://doi.org/10.1098/rstb.1990.0184
  53. Yoo, G. Y., and J. E. Kim, 2007: Development of a methodology assessing rice production vulnerabilities to climate change. KEI/RE-14, Korea Environment Institute, Seoul, 84pp.
  54. Yun, J. I., 1990: Analysis of the climate impact on Korean rice production under the carbon dioxide scenario. Asia-Pacific Journal of Atmospheric Sciences 26(4), 263-274. (in Korean with English abstract)

피인용 문헌

  1. Assessment of the Angstrom-Prescott Coefficients for Estimation of Solar Radiation in Korea vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.221
  2. Temporal and Spatial Distribution of Growing Degree Days for Maize in Northeast District of China vol.35, pp.4, 2016, https://doi.org/10.5338/KJEA.2016.35.4.33
  3. High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.384