• Title/Summary/Keyword: Flux correction

Search Result 90, Processing Time 0.03 seconds

The verification of Luminous flux of Reference illuminant for New light source by the calculated correction factor (보정계수 산출에 의한 신광원용 표준램프 광속의 검증)

  • Hwang, Myung-Keun;Shin, Sang-Wuk;Yi, Chin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.369-372
    • /
    • 2009
  • When measuring the luminous flux of a light source at the integrating sphere photometer, it can know the luminous flux to compare the standard lamp with the specimen lamp at the same location. But in case of PLS(plasma lighting system, microwave discharged lamp), that two lamps are cannot be the same location. If the reference illuminant and specimen lamp are cannot measure identical location, we should measure the variation of the luminous flux. For the outcome we can turn out a correction factor to revise and reflect it. But the better way is calibrate the specimen lamp locate the identical location of reference illuminant measured. In this thesis, we've test to find the correction factor for consider that change the measuring location. And it turns out the correction factor. From this, it presents the result to make a select for the reference illuminant which is against the illuminant type for newly produce.

Model Parameter Correction Algorithm for Predictive Current Control of SMPMSM

  • Li, Yonggui;Wang, Shuang;Ji, Hua;Shi, Jian;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1004-1011
    • /
    • 2016
  • The inaccurate model parameters in the predictive current control of surface-mounted permanent magnet synchronous motor (SMPMSM) affect the current dynamic response and steady-state error. This paper presents a model parameter correction algorithm based on the relationship between the errors of model parameters and the static errors of dq-axis current. In this correction algorithm, the errors of inductance and flux are corrected in two steps. Resistance is ignored. First, the proportional relations between inductance and d-axis static current errors are utilized to correct the error of model inductance. Second, the flux is corrected by utilizing the proportional relations between flux and q-axis static current errors under the condition that inductance is corrected. An experimental study with a 100 W SMPMSM is performed to validate the proposed algorithm.

Detector Foil Self-Shielding Correction Factors

  • Kwon, Oh-Sun;Kim, Bong-Ghi;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.197-201
    • /
    • 1996
  • In the detail reaction-rate measurements in a critical assembly using the foil activation method, the measured activations of detector foils have inevitably errors caused by detector foil self-shielding effect. If neutron flux could be approximated to Westcott flux: i.e. well thermalized Maxwellian distribution, these activations of detector foil could be corrected to represent the unperturbated flux at any detected position in the cell with using Westcott option and reaction-rate option of the lattice code, WIMS-AECL. These calculated detector material self-shielding correction factors of the tested fuel, CANFLEX provided much information about neutron spectrum of test lattice cell as well as the correction factors themselves. The results could be verified by another lattice calculations.

  • PDF

Development of Critical Heat Flux Correction Factor for Water under Flow Oscillation Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.242-247
    • /
    • 1996
  • Flow oscillations in boiling channels induces a drastic reduction of the (critical heat flux) CHF or premature burnout. However, most of CHF works and correlations have been focused on stable flow conditions without considering flow oscillation. Therefore to improve the understanding on flow oscillation CHF, in this paper a new CHF correction factor to predict the CHF values under flow oscillation conditions has been developed from 126 experimental data. Also to investigate the dominant factor on flow oscillation CHF parametric trends are analyzed by using the developed correction factor. The overall mean accuracy ratio of the developed correction factor is 1.033 with a standard deviation of 0.195. The RMS errors 0.198. Its assessment shows that the predictions agree well with the experimental data within 25% error bounds.

  • PDF

Development of the Boated Length to Diameter Correction Factor on Critical Heat Flux Using the Artificial Neural Networks

  • Lee, Yong-Ho;Chun, Tae-Hyun;Beak, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.443-448
    • /
    • 1998
  • With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux(CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiment for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy fur the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data.

  • PDF

Flux calibration method for narrow band imaging observation

  • Ahn, Hojae;Pak, Soojong;Kang, Wonseok;Kim, Taewoo;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2018
  • Flux calibration for narrow band photometric data gives us an opportunity to get a line flux of extended targets. We developed flux calibration processes for narrow band photometry using broad band filters as a continuum indicator. We derived parameters for color correction and zero point correction including color terms. Applying our method, we successfully subtracted continuum emissions and calibrated the emission lines from an FU Ori type object, V960 Mon.

  • PDF

Calculation of correction factor in PLS luminous flux measurement with integrating sphere (적분구를 이용한 PLS 광속측정의 보정계수 산출 및 적용)

  • Lee, Jung-Wook;Park, Kyung-Hoon;Yoo, Jae-Kyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.13-15
    • /
    • 2006
  • This paper describes the problem generated in PLS luminous flux measurement with integrating sphere. In RS case, we don't use the center position of the sphere but side position for flux test The difference of the lamp position makes the luminous flux difference of same light source. We confirmed the phenomenon with three other kinds of lamps and ensured the repeatability and reliability of this work at two laboratories. finally, the correction factor which should be applied for the PLS test at Side position was calculated.

  • PDF

A Numerical Study on Temperature Prediction Bias using FDS in Simulated Thermal Environments of Fire (모사된 화재의 열적환경에서 FDS를 이용한 온도 예측오차에 관한 수치해석 연구)

  • Han, Ho-Sik;Kim, Bong-Jun;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.14-20
    • /
    • 2017
  • A numerical study was conducted to identify the predictive performance for the bare-bead thermocouple (TC) using FDS (Fire Dynamics Simulator) in simulated thermal environments of fire. A relative prediction bias of TC temperature calculated from reverse-radiation correction by FDS was evaluated with the comparison of previous experimental data. As a result, it was identified that the TC temperatures predicted by FDS were lower than the temperatures measured by bare-bead TC for the ranges of heat flux and gas temperature considered. The relative prediction bias of TC temperature by FDS was gradually increased with the increase in radiative heat flux and also significantly increased with the decrease in the gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the TC temperature predicted by FDS had the relative bias of approximately -20% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. It is predicted from the present study that more accurate validation of fire modeling will be possible with the quantitative prediction bias occurred in the process of reverse-radiation correction of temperature predicted by FDS.

Chemical Shift Artifact Correction in MREIT

  • Minhas, Atul S.;Kim, Young-Tae;Jeong, Woo-Chul;Kim, Hyung-Joong;Lee, Soo-Yeol;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.461-468
    • /
    • 2009
  • Magnetic resonance electrical impedance tomography (MREIT) enables us to perform high-resolution conductivity imaging of an electrically conducting object. Injecting low-frequency current through a pair of surface electrodes, we measure an induced magnetic flux density using an MRI scanner and this requires a sophisticated MR phase imaging method. Applying a conductivity image reconstruction algorithm to measured magnetic flux density data subject to multiple injection currents, we can produce multi-slice cross-sectional conductivity images. When there exists a local region of fat, the well-known chemical shift phenomenon produces misalignments of pixels in MR images. This may result in artifacts in magnetic flux density image and consequently in conductivity image. In this paper, we investigate chemical shift artifact correction in MREIT based on the well-known three-point Dixon technique. The major difference is in the fact that we must focus on the phase image in MREIT. Using three Dixon data sets, we explain how to calculate a magnetic flux density image without chemical shift artifact. We test the correction method through imaging experiments of a cheese phantom and postmortem canine head. Experimental results clearly show that the method effectively eliminates artifacts related with the chemical shift phenomenon in a reconstructed conductivity image.

A Study of the Heated Length to Diameter Effects on Critical Heat Flux

  • Lee, Yong-Ho;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.540-545
    • /
    • 1997
  • An analytical and experimental investigation has been performed on the heated length-to-diameter effect on critical heat flux for fixed exit conditions. A L/D correction factor is developed by applying artificial neural network and conventional regression techniques to the KAIST CHF data base. In addition, experiment is being performed to validate the developed L/D correction factor with independent data. Assessment shows that the developed correction factor is promising for practical applications.

  • PDF