DOI QR코드

DOI QR Code

Growth Inhibition of Listeria monocytogenes by Weissella spp. from Kimchi Through Real-time PCR

실시간 정량 PCR을 통한 김치 유래 Weissella spp.에 의한 Listeria monocytogenes 생육 억제

  • Lee, Young-Duck (Department of Food Science and Engineering, Seowon University) ;
  • Kim, Dae-Yong (Department of Pharmaceutical Science and Engineering, Seowon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Gachon University)
  • Received : 2014.11.04
  • Accepted : 2014.11.19
  • Published : 2015.03.30

Abstract

Weissella spp. from traditional Korean foods of Kimchi were isolated and characterized against food-borne pathogenic Listeria monocytogens. The isolates were identified as W. cibaria 0D17 and W. confusa 0D23 from Kimchi by the biochemical characteristics and 16S DNA sequencing. The culture solutions of the isolates adjusted to pH 7.0 showed L. monocytogens inhibition. To analyze the quantitative detection of L. monocytogenes, real-time PCR was performed according to the SYBR Green I method. The isolates grew well and L. monocytogens did not grow during the co-culture with those strains at $37^{\circ}C$. Therefore, W. cibaria 0D17 and W. confusa 0D23 might be the candidates as the functional lactic acid bacteria for improving food safety.

본 연구에서는 김치로부터 W. cibaria 0D17와 W. confusa 0D23를 생화학적 특성 분석과 16s rRNA 염기서열 분석을 통해 분리, 동정하였으며, W. cibaria 0D17와 W. confusa 0D23 배양 상등액이 L. monocytogenes에 대한 항균 효과가 있는 것으로 나타났다. 또한, 실시간 정량 PCR을 통해 W. cibaria 0D17 및 W. confusa 0D23가 L. monocytogenes를 공동 배양했을 때의 생육억제 효과를 분석한 결과, $37^{\circ}C$에서는 생육 억제 효과가 있는 것으로 확인되었다. 따라서, 김치 유래 Weissella spp.가 갖는 L. monocytogenes에 대한 항균 활성에 대한 기초 자료로 활용가능 할 것으로 판단되며, W. cibaria 0D17 및 W. confusa 0D23가 생산하는 bacteriocin 등의 항균 물질 특성에 대한 연구가 추가적으로 진행될 필요가 있을 것이다.

Keywords

References

  1. Leroy, F. and De Vuyst, L.: Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15, 67-78 (2004). https://doi.org/10.1016/j.tifs.2003.09.004
  2. Vyas, U. and Ranganathan, N.: Probiotics, prebiotics, and synbiotics: Gut and beyond. Gastroenterol. Res. Pract. 2012, 1-16 (2012).
  3. Jeppsson, B., Mangell, P., and Thorlacius, H.: Use of probiotics as prophylaxis for postoperative infections. Nutri. 3, 604-612 (2011). https://doi.org/10.3390/nu3050604
  4. Wallace, T.C., Guarner, F., Madsen, K., Cabana, M.D., Gibson, G., Hentges, E., and Sanders, M.E.: Human gut microbiota and its relationship to health and disease. Nutr. Rev. 69, 392-403 (2011). https://doi.org/10.1111/j.1753-4887.2011.00402.x
  5. De Bruyne, K., Camu, N., De Vuyst, L., and Vandamme, P.: Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 60,1999-2005 (2010). https://doi.org/10.1099/ijs.0.019323-0
  6. Collins, M.D., Samelis, J., Metaxopoulos, J., and Wallbanks, S.: Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75, 595-603 (1993). https://doi.org/10.1111/j.1365-2672.1993.tb01600.x
  7. Kim, J.H., Lee, K.W., Han, N.S., Park, J.Y., and Chun, J.Y.: Importance of Weissella Species during Kimchi Fermentation and Future Works. J. Microbiol. Biotechnol. 38, 341-348 (2010).
  8. Srionnual, S., Yanagida, F., Lin, L.H., Hsiao, K.N., and Chen, Y.S.: Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som, a fermented fish product from Thailand. Appl. Environ. Microbiol. 73, 2247-50 (2007). https://doi.org/10.1128/AEM.02484-06
  9. Leong, K.H., Chen, Y.S., Lin, Y.H., Pan, S.F., Yu, B., and Wu, H.C., Yanagida, F.: Weissellicin L, a novel bacteriocin from sian-sianzih-isolated Weissella hellenica 4-7. J. Appl. Microbiol. 115, 70-76 (2013). https://doi.org/10.1111/jam.12218
  10. Dieterich, G., Karst, U., Fischer, E. Wehland, J. and Jansch, L.: LEGER: knowledge database and visualization tool for comparative genomics of pathogenic and non-pathogenic Listeria species. Nucleic Acids Res. 34, D402-D406 (2006). https://doi.org/10.1093/nar/gkj071
  11. Farber, J.M. and Peterkin, P.I.: Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55, 476-511 (1991).
  12. Gravesen, A., Z. Diao, J. Voss, B.B. Budde, and S. Knochel.: Differential inactivation of Listeria monocytogenes by Dand L lactic acid. Lett. Appl. Microbiol. 39, 528-532 (2004). https://doi.org/10.1111/j.1472-765X.2004.01628.x
  13. Lu, Z., Sebranek, J.G., Dickson, J.S., Mendonca, A.F. and Bailey, T.B.: Application of predictive models to estimate Listeria monocytogenes growth on frankfurters treated with organic acid salts. J. Food Prot. 68, 2326-2332 (2005).
  14. Bae, J.W., Rhee, S.K., Park, J.R., Chung, W.H., Nam, Y.D., Lee, I., Kim, H. and Park, Y.H.: Development and evaluation of genome-probing microarray for monitoring lactic acid bacteria. Appl. Environ. Microbiol. 71, 8825-8835 (2005). https://doi.org/10.1128/AEM.71.12.8825-8835.2005
  15. Kim, M.J., and Chun, J.S.: Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103, 91-96 (2005). https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  16. Lee, J.S., Heo, G.Y., Lee, J.W., Oh, Y.J., Park, J.A., Park, Y.H., Pyun,Y.R., and Ahn, J.S.: Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102, 143-150 (2005). https://doi.org/10.1016/j.ijfoodmicro.2004.12.010
  17. Ahn, S.B., Park, H.E., Lee, S.M., Kim, S.Y., Shon, M.Y., and Lee, W.K.: Characteristics and immuno-modulatory effects of Weissella cibaria JW15 isolated from Kimchi, Korea traditional fermented food, for probiotic use. J. Biomed. Res. 14, 206-211 (2013). https://doi.org/10.12729/jbr.2013.14.4.206
  18. Maurer, J.: The methodology of PCR. pp 27-40: In: PCR methods in foods. Maurer J (ed.), Springer, Inc., New York, NY, USA (2006).
  19. Heo, S., Lee, S.K., Lee, C.H., Min, S.G., Park, J.S., and Kim. H.Y.: Morphological changes induced in Listeria monocytogenes V7 by a bacteriocin produced by Pediococcus acidilactici. J. Microbiol. Biotechnol. 17, 663-667 (2007).
  20. Iseppi, R., Pilati, F., Marini, M., Toselli, M., Niederhausern, D.S., Guerrieri, F., Messi, P., Sabia, C., Manicardi, G., Anacarso, I., and Bondi, M.: Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging. Int. J. Food Microbiol. 30, 281-287 (2008).
  21. Shin, M.S., Han, S.K., Ryu, J.S., Kim, K.S., and Lee, W.K.: Isolation and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from Kimchi. J. Appl. Microbiol. 105, 331-339 (2008). https://doi.org/10.1111/j.1365-2672.2008.03770.x
  22. Trias, R., Badosa, E., Montesinos, E., and Baneras, L.: Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Int. J. Food Microbiol. 127, 91-98 (2008). https://doi.org/10.1016/j.ijfoodmicro.2008.06.011
  23. Boyer, R.R., Matak, K., Sumner, S.S., Meadows, B., Williams, R.C., Eifert, J.D., Birbari, W.: Survival of Listeria monocytogenes, Listeria innocua, and lactic acid bacteria in chill brines. J. Food Sci. 74, M219-M23 (2009). https://doi.org/10.1111/j.1750-3841.2009.01182.x
  24. Aguilar, C., and KLOTZ, B.: Effect of the temperature on the antagonistic activity of lactic acid bacteria against Escherichia coli and Listeria monocytogenes. J. Food Safety. 30, 996-1015 (2010). https://doi.org/10.1111/j.1745-4565.2010.00257.x
  25. de Carvalho, A.A., de Paula, R.A., Mantovani, H.C., and de Moraes, C.A.: Inhibition of Listeria monocytogenes by a lactic acid bacterium isolated from Italian salami. Food Microbiol. 23, 213-219 (2006).