DOI QR코드

DOI QR Code

Bactericidal Efficacy of a Disinfectant Composed of Povidone-iodine Against Clostridium Perfringens and Mycobacterium Fortuitum

  • Cha, Chun-Nam (Engineering Research Institute, Department of Industrial Systems Engineering, Gyeongsang National University) ;
  • Park, Eun-Kee (Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University) ;
  • Cho, Youyoung (Department of Nursing, Hanyeong College) ;
  • Yoo, Chang-Yeul (Department of Computer Information, Gyeongnam Provincial Namhae College) ;
  • Tutkun, Engin (Ankara Occupational Diseases Hospital, Ministry of Health) ;
  • Kim, Suk (Research Institute of Live Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu-Jang (Research Institute of Live Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2014.10.04
  • Accepted : 2014.12.09
  • Published : 2015.03.30

Abstract

Clostridium perfringens (C. perfringens) and Mycobacterium fortuitum (M. fortuitum) are associated with considerable diseases in animals and human. In this study, the disinfection efficacy of a commercial disinfectant composed to povidone-iodine (PVI) was evaluated against C. perfringens and M. fortuitum. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to C. perfringens and M. fortuitum for 30 min at $4^{\circ}C$. The disinfectant and test bacteria were diluted with hard water (HW) or organic matter suspension (OM) according to treatment condition. On HW condition, the bactericidal activity of the disinfectant against C. perfringens and M. fortuitum was 50 and 80 fold dilutions, respectively. On OM condition, the bactericidal activity of the disinfectant against both C. perfringens and M. fortuitum was 15 fold dilutions. As the disinfectant composed to PVI possesses bactericidal efficacy against C. perfringens and M. fortuitum, the disinfectant solution can be used to control the spread of bacterial diseases.

Clostridium perfringens (C. perfringens)와 Mycobacterium fortuitum (M. fortuitum)은 동물과 사람에서 심각한 질병과 관련이 있는 세균들로 알려져 있다. 본 연구에서는, povidone-iodine을 주성분으로 하는 소독제의 살균효과를 C. perfringes와 M. fortuitum을 대상으로 평가하였다. 소독제의 살균효과는 배지희석법을 이용하여, 대상 세균들을 $4^{\circ}C$에서 소독제에 30분 동안 노출시킨 다음, 가장 낮은 소독제의 살균 희석배수를 결정하였다. 소독제는 경수와 유기물로 희석하였으며, 경수 조건에서, C. perfringes와 M. fortuitum에 대해 효과적인 소독제 희석배수는 각각 50과 80배이었다. 유기물 조건에서는, C. perfringes와 M. fortuitum에 대해 효과적인 소독제 희석배수는 모두 15배로 나타났다. 이상의 결과로 부터, povidone-iodine을 주성분으로 하는 소독제는 C. perfringes와 M. fortuitum에 대해 살균효과를 갖는 것으로 확인되었으며, C. perfringes와 M. fortuitum에 의한 질병의 확산을 방지하기 위해 사용될 수 있을 것으로 사료된다.

Keywords

References

  1. Ryan, K.J.: Clostridium, Peptostreptococcus, Bacteroides, and Other Anaerobes. In Sherris Medical Microbiology-An Introduction to Infectious Disease, 4th Ed. (Ryan, K.J. and Ray, C.G. eds.) McGraw-Hill, New York, pp. 309-326 (2004).
  2. Borah, D., Solanki, V. and Mishra, V.K.: Protein and molecular characterization of Clostridium spp. isolated from contaminated food and soil samples. Int. J. Appl. Biol. Pharm. Technol. 2, 189-193 (2011).
  3. Fisher, D.J., Miyamoto, K., Harrison, B., Akimoto, S., Sarker, M.R. and McClane, B.A.: Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Vet. Microbiol. 56, 747-762 (2005).
  4. Young, M.K., Smith, P., Holloway, J. and Davison, R.P.: An outbreak of Clostridium perfringens and the enforcement of food safety standards. Communic. Dis. Intell. 32, 462-465 (2008).
  5. Osman, K.M., Soliman, Y.A., Amin, Z.M.S. and Aly, M.A. K.: Prevalence of Clostridium perfringens type A isolates in commercial broiler chickens and parent broiler breeder hens in Egypt. Rev. Sci. Tech. Off. Int. Epiz. 31, 931-941 (2012). https://doi.org/10.20506/rst.31.3.2169
  6. Eriksen, J., Zenner, D., Anderson, S.R., Grant, K. and Kumar, D.: Clostridium perfringens in London, July 2009: two weddings and an outbreak. Euro surveill. 15, pii=19598 (2010).
  7. Miki, Y., Miyamoto, K., Kaneko-Hirano, I., Fujiuchi, K. and Akimoto, S.: Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan. Appl. Environ. Microbiol. 74, 5366-5372 (2008). https://doi.org/10.1128/AEM.00783-08
  8. Morris, W.E. and Fernandez-Miyakawa, M.E.: Toxins of Clostridium perfringens. Rev. Argent Microbiol. 41, 251-260 (2009).
  9. Cooper, K.K., Theoret, J.R., Stewart, B.A., Trinh, H.T., Glock, R.D. and Songer, J.G.: Virulence for chickens of Clostridium perfringens isolated from poultry and other sources. Anaerobe 16, 289-292 (2010). https://doi.org/10.1016/j.anaerobe.2010.02.006
  10. Wen, Q. and McClane, B.A.: Detection of enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Appl. Environ. Microbiol. 70, 2685-2691 (2004). https://doi.org/10.1128/AEM.70.5.2685-2691.2004
  11. Smith, M.B., Schnadig, V.J., Boyars, M.C. and Woods, G.L.: Clinical and pathologic features of Mycobacterium fortuitum infections. An emerging pathogen in patients with AIDS. Am. J. Clin. Pathol. 116, 225-232 (2001). https://doi.org/10.1309/HF2V-E8WV-PX4Q-CHQH
  12. Bercovier, H. and Vincent, V.: Mycobacterial infections in domestic and wild animals due to Mycobacterium marinum, M. fortuitum, M. chelonae, M. porcinum, M. farcinogenes, M. smegmatis, M. scrofulaceum, M. xenopi, M. kansasii, M. simiae and M. genavense. Rev. Sci. Tech. 20, 265-290 (2001).
  13. Talaat, A.M., Trucksis, M., Kane, A.S. and Reimschuessel, R.: Pathogenicity of Mycobacterium fortuitum and Mycobacterium smegmatis to goldfish, Carassius auratus. Vet. Microbiol. 66, 151-64 (1999). https://doi.org/10.1016/S0378-1135(99)00002-4
  14. Cadmus, S.I., Adesokan, H.K., Okker, M. and Jahans, K.: Mycobacterium fortuitum from lesions of slaughtered pigs in Ibadan, Nigeria. Rev. Sci. Tech. 29, 705-711 (2010).
  15. Fernandez Miyakawa, M.E., Pistone Creydt, V., Uzal, F.A., McClane, B.A. and Ibarra, C.: Clostridium perfringens enterotoxin damages the human intestine in vitro. Infect. Immun. 73, 8407-8410 (2005). https://doi.org/10.1128/IAI.73.12.8407-8410.2005
  16. Birkhead, G., Vogt, R.L., Heun, E.M., Snyder, J.T. and McClane, B.A.: Characterization of an outbreak of Clostridium perfringens food poisoning by quantitative fecal culture and fecal enterotoxin measurement. J. Clin. Microbiol. 26, 471-474 (1988).
  17. Bohsali, A., Abdalla, H., Velmurugan, K. and Briken, V.: The non-pathogenic mycobacteria M. smegmatis and M. fortuitum induce rapid host cell apoptosis via a caspase-3 and TNF dependent pathway. BMC Microbiol. 10, 237 (2010).
  18. Parti, R.P., Srivastava, S., Gachhui, R., Srivastava, K.K. and Srivastava, R.: Murine infection model for Mycobacterium fortuitum. Microbes Infect. 7, 349-355 (2005). https://doi.org/10.1016/j.micinf.2004.11.006
  19. Udompijitkul, P., Paredes-Sabja, D. and Sarker, M.R.: Inhibitory effects of nisin against Clostridium perfringens food poisoning and nonfood-borne isolates. J. Food Sci. 77, M51-M56 (2012). https://doi.org/10.1111/j.1750-3841.2011.02475.x
  20. Sarker, M.R., Shivers, R.P., Sparks, S.G., Juneja, V.K. and McClane, B.A.: Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Appl. Environ. Microbiol. 66, 3234-3240 (2000). https://doi.org/10.1128/AEM.66.8.3234-3240.2000
  21. Reddy Velugoti, P., Rajagopal, L., Juneja, V. and Thippareddi, H.: Use of calcium, potassium, and sodium lactates to control germination and outgrowth of Clostridium perfringens spores during chilling of injected pork. Food Microbiol. 24, 687-694 (2007). https://doi.org/10.1016/j.fm.2007.04.004
  22. Franco, M.M., Paes, A.C., Ribeiro, M.G., de Figueiredo Pantoja, J.C., Santos, A.C., Miyata, M., Leite, C.Q., Motta, R.G. and Listoni, F.J.: Occurrence of mycobacteria in bovine milk samples from both individual and collective bulk tanks at farms and informal markets in the southeast region of Sao Paulo, Brazil. BMC Vet. Res. 9, 85 (2013). https://doi.org/10.1186/1746-6148-9-85
  23. Slavi, D., Boerlin, P., Fabri, M., Klotins, K.C., Zoethout, J.K., Weir, P.E. and Bateman, D.: Antimicrobial susceptibility of Clostridium perfringens isolates of bovine, chicken, porcine, and turkey origin from Ontario. Can. J. Vet. Res. 75, 89-97 (2011).
  24. Gholamiandehkordi, A., Eeckhaut, V., Lanckriet, A., Timbermont, L., Bjerrum, L., Ducatelle, R., Haesebrouck, F. and Van Immerseel, F.: Antimicrobial resistance in Clostridium perfringens isolates from broilers in Belgium. Vet. Res. Commun. 33, 1031-1037 (2009). https://doi.org/10.1007/s11259-009-9306-4
  25. Gillespie, S.H., Basu, S., Dickens, A.L., O'Sullivan, D.M. and McHugh, T.D.: Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. J. Antimicrob. Chemother. 56, 344-348 (2005). https://doi.org/10.1093/jac/dki191
  26. Kassaify, Z.G., El Hakim, R.G., Rayya, E.G., Shaib, H.A. and Barbour, E.K.: Preliminary study on the efficacy and safety of eight individual and blended disinfectants against poultry and dairy indicator organisms. Vet. Ital. 43, 821-830 (2007).
  27. Sabagh, B.P., Souto Ada, S., Reis, L.M., Silva, S.A., Pereira, D.C., Neves Mde, C., Pinheiro, R.R., Duarte, R.S., Miyazaki, N.H. and Boas, M.H.: Comparative study with two different enrichments in the culture media used in the disinfectant efficacy assay. J. Microbiol. Methods 88, 255-262 (2012). https://doi.org/10.1016/j.mimet.2011.12.004
  28. Meckes, M.C. and Rhodes, E.R.: Evaluation of bacteriological indicators of disinfection for alkaline treated biosolids. J. Environ. Eng. Sci. 3, 231-236 (2004). https://doi.org/10.1139/s04-008
  29. Shams, A.M., O'Connellm, H., Arduino, M.J. and Rose, L.J.: Chlorine dioxide inactivation of bacterial threat agents. Let.t Appl. Microbiol. 53, 225-230 (2011). https://doi.org/10.1111/j.1472-765X.2011.03095.x
  30. Lindstedt, M., Allenmark, S., Thompson, R.A. and Edebo, L.: Antimicrobial activity of betaine esters, quaternary ammonium amphipheles which spontaneously hydrolyze into nontoxic components. Antimicrob. Agents Chemother. 34, 1949-1954 (1990). https://doi.org/10.1128/AAC.34.10.1949
  31. McFarland, J.: The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA 49, 1176-1178 (1907).
  32. Zaid, A.: Formulation and evaluation of the chemical stability of povidone-iodine in some trademarks cleaning formulations. Int. J. Pharm. Pharm. Sci. 5, 46-48 (2013).
  33. Cunliffe, P.J. and Fawcett, T.N.: Wound cleansing: the evidence for the techniques and solutions used. Prof. Nurse 18, 95-99 (2002).
  34. Art, G.: Combination povidone-iodine and alcohol formulations more effective, more convenient versus formulations containing either iodine or alcohol alone. J. Infus. Nurs. 28, 314-320 (2005). https://doi.org/10.1097/00129804-200509000-00004
  35. Hah, J.H., Roh, D.H., Jung, Y.H., Kim, K.H. and Sung, M.W.: Selection of irrigation fluid to eradicate free cancer cells during head and neck cancer surgery. Head Neck 34, 546-550 (2012). https://doi.org/10.1002/hed.21773
  36. Pattana-arun. J. and Wolff. B.G.: Benefits of povidone-iodine solution in colorectal operations: science or legend. Dis. Colon. Rectum. 51, 966-971 (2008). https://doi.org/10.1007/s10350-008-9213-8
  37. Basha, G., Ghirardi, M., Geboes, K., Yap, S.H. and Penninckx, F.: Limitations of peritoneal lavage with antiseptics in prevention of recurrent colorectal cancer caused by tumorcell seeding: experimental study in rats. Dis. Colon. Rectum. 43, 1713-1718 (2000). https://doi.org/10.1007/BF02236856
  38. Reimer, K., Wichelhaus, T.A., Schafer, V., Rudolph, P., Kramer, A., Wutzler, P., Ganzer, D. and Fleischer, W.: Antimicrobial effectiveness of povidone-iodine and consequences for new application areas. Dermatology 204, 114-120 (2002). https://doi.org/10.1159/000057738
  39. Durani, P. and Leaper, D.: Povidone-iodine: use in hand disinfection, skin preparation and antiseptic irrigation. Int. Wound J. 5, 376-387 (2008). https://doi.org/10.1111/j.1742-481X.2007.00405.x
  40. Xia, Y., Wei, L., Gao, X., Wu, H., Zheng, H. and Yu, Z.: Experimental study on toxicity of povidone iodine disinfectant. Chin. J. Disinfect. 25, 263-267 (2005).
  41. Heiner, J.D., Hile, D.C., Demons, S.T. and Wedmore, I.S.: 10% povidone-iodine may be a practical field water disinfectant. Wilderness Environ. Med. 21, 332-336 (2010). https://doi.org/10.1016/j.wem.2010.09.008
  42. Udompijitkul, P., Alnoman, M. and Sarker, M.R.: Inactivation strategy for Clostridium perfringens spores adhered to food contact surfaces. Food Microbiol. 34, 328-336 (2013). https://doi.org/10.1016/j.fm.2013.01.003
  43. Phillips, M.S. and von Reyn, C.F.: Nosocomial infections due to nontuberculous mycobacteria. Clin. Infect. Dis. 33, 1363-1374 (2001). https://doi.org/10.1086/323126