DOI QR코드

DOI QR Code

Irrigation Control for Improving Irrigation Efficiency in Coir Substrate Hydroponic System

코이어 배지 수경재배에서 관수효율 향상을 위한 급액 제어

  • Yoo, Hyung-Joo (Department of Environmental Horticulture, University of Seoul) ;
  • Choi, Eun-Young (Department of Agricultural Science, Korea National Open University) ;
  • Lee, Yong-Beom (Department of Environmental Horticulture, University of Seoul)
  • 유형주 (서울시립대학교 환경원예학과) ;
  • 최은영 (한국방송통신대학교 농학과) ;
  • 이용범 (서울시립대학교 환경원예학과)
  • Received : 2015.06.13
  • Accepted : 2015.08.07
  • Published : 2015.09.30

Abstract

The objectives of this study were to determine optimal length of off-time between irrigation cycles to improve irrigation efficiency using a frequency domain reflectometry (FDR) sensor-automated irrigation (FAI) system for tomato (Solanum lycopersicum L.) cultivation aimed at minimizing effluent from coir substrate hydroponics. For treatments, the 5-minute off-time length between 3-minute run-times (defined as 3R5F), 10-minute off-time length between 3-minute run-times (defined as 3R10F), or 15-minute off-time length between 5-minute run-times (defined as 5R15F) were set. During the 3-minute or 5-minute run-time, a 60mL or 80mL of nutrient solution was irrigated to each plant, respectively. Until 62 days after transplant (DAT) during the autumn to winter cultivation, daily irrigation volume was in the order of 3R5F (858mL) > 5R15F (409mL) > 3R10F (306mL) treatment, and daily drainage ratio was in the order of 3R5F (44%) > 5R15F (23%) > 3R10F (14%). Between 63 and 102 DAT, daily irrigated volume was in the order of 5R15F (888mL) > 3R5F (695mL) > 3R10F (524mL) with the highest drainage ratio, 19% (${\pm}2.6$), at the 5R15F treatment. During the spring to summer cultivation, daily irrigation volume and drainage ratio per plant was higher in the 3R5F treatment than that of the 3R10F treatment. For both cultivations, a higher water use efficiency (WUE) was observed under the 3R10F treatment. Integrated all the data suggest that the optimal off-time length is 10 minutes.

본 연구는 환경오염과 양수분 손실을 주는 비순환식 수경재배에 FDR센서를 이용한 자동관수시스템을 적용할 때 관수효율을 높이기 위한 최적의 최소대기시간을 설정하고자 수행되었다. 실험은 가을과 겨울철에 봄과 여름철에 두 번 수행하였고 가을과 겨울철에는 3분 급액과 최소대기시간을 5분으로 한 3R5F 처리구, 3분 급액과 최소대기시간을 10분으로 한 3R10F 처리구, 5분 급액과 최소대기시간을 15분으로 한 5R15F 처리구를 설정하여 실험하였고 봄과 여름철에는 3분 급액과 최소대기시간을 5분으로 한 3R5F 처리구, 3분 급액과 최소 대기시간을 10분으로 한 3R10F 처리구를 설정하여 실험하였다. 3분 급액은 주당 60mL, 5분 급액은 주당 80mL가 공급되었다. 가을과 겨울철 재배에서 정식 후 62일 까지 주당 급액량은 3R5F (858mL) > 5R15F (409mL) > 3R10F (306mL) 처리 순으로 나타났고 배액률은 3R5F (44%) > 5R15F (23%) > 3R10F (14%) 순으로 나타났다. 정식 후 62일부터 102일 까지는 일일 주당 급액량이 5R15F (888mL)> 3R5F (695mL)> 3R10F (524mL) 순으로 나타났고 이 시기에 배액률은 5R15F에서 가장 높았다. 봄과 여름재배에서는 일일 주당 급액량과 배액율이 3R5F 처리구에서 3R10F 처리구보다 높았다. 두 재배 모두에서 수분이용효율 (WUE)은 3R10F 처리에서 높았다. 따라서 FDR 센서를 활용한 자동화 관수 시스템에서 관수효율을 높이기 위한 최소대기시간은 10분으로 고찰된다.

Keywords

References

  1. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration, guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, FAO, Rome, Italy.
  2. Ben-Asher, J., C.J. Phene, and A. Kinarti. 1992. Canopy temperature to assess daily evapotranspiration and management of high frequency drip irrigation systems. Agr. Water Manag. 22:379-390. https://doi.org/10.1016/0378-3774(92)90045-X
  3. Bilderback, T.E., S.L. Warren, S. James, Jr. Owen and J.P. Albano. 2005. Healthy substrates need physicals too!. Hort-Tech. 15:747-751.
  4. Burnett, S.E. and M.W. van Iersel. 2008. Morphology and irrigation efficiency of Gaura lindheimeri growth with capacitance sensor-controlled irrigation. HortScience 43:1555-1560.
  5. Cardenas-Lailhacar, B., M.D. Dukes, and G.L. Miller. 2010. Sensor-based automation of irrigation on bermudagrass, during wet weather conditions. J. Irr. Drain. Eng. 134:120-128.
  6. Choi, E.Y., K.Y. Choi, and Y.B. Lee. 2013a. Non-drainage irrigation scheduling in coir substrate hydroponic system for tomato cultivation by a frequency domain reflectometry sensor. Europ. J. Hort. Sci. 78:132-143.
  7. Choi, E.Y., Y.H. Woo, M. Son, K.Y. Choi, and Y.B. Lee. 2013b. Nutrient solution concentration effects on non-drainage irrigation scheduling in coir substrate hydroponic system for tomato cultivation by a FDR sensor. Intl. J. Food Agr. Environ. 11:636-641.
  8. Choi, E.Y., S.K. Seo, K.Y. Choi, and Y.B. Lee. 2014. Development of a non-drainage hydroponic system with a coconut coir substrate by a frequency domain reflectometry sensor for tomato cultivation. J. Plant Nutr. 37:748-764. https://doi.org/10.1080/01904167.2013.868479
  9. Choi, E.Y., Y.H. Yoon, K.Y. Choi, and Y.B. Lee. 2015. Environmentally sustainable production of tomato in coir substrate hydroponic system using a frequency domain reflectometry sensor. Hort. Environ. Biotechnol. 56(2):167-177. https://doi.org/10.1007/s13580-015-0036-y
  10. Ehret, D.L., J.G. Menzies, and T. Helmer. 2005. Production and quality of greenhouse roses in recirculating nutrient systems. Sci. Hort. 106:103-113. https://doi.org/10.1016/j.scienta.2005.03.002
  11. Fares, A. and V. Polyakov. 2006. Advances in crop water management using capacitive water sensors. Adv. Agron. 90:43-77. https://doi.org/10.1016/S0065-2113(06)90002-9
  12. Fernandez, J.E., S.R. Green, H.W. Caspari, A. Diaz-Espero, and M.V. Cuevas. 2008. The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant Soil 305:91-104. https://doi.org/10.1007/s11104-007-9348-8
  13. Fricke, A. 1998. Influence of different surplus irrigation and substrate on production of greenhouse tomatoes. Acta Hort. 458:33-42.
  14. Giuffrida, F., S. Argento, V. Lipari, and C. Leonardi. 2003. Methods for controlling salt accumulation in substrate cultivation. Acta Hort. 614:799-803.
  15. Jaimez, R.E., F. Rada, and C. Garcia-Nunez. 1999. The effect of irrigation frequency on water and carbon relations in three cultivars of sweet pepper (Capsicum chinense Jacq), in a tropical semiarid region. Sci. Hort. 81:301-308. https://doi.org/10.1016/S0304-4238(99)00017-5
  16. Jones, H.G. 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. J. Experi. Bot. 55: 2427-2436. https://doi.org/10.1093/jxb/erh213
  17. Mathers, H.M. T.H. Yeager, and L.T. Case. 2005. Improving Irrigation Water Use in Container Nurseries. HortTech. 15:8-12.
  18. Papadopoulos, A.P., U. Saha, X. Hao, and S. Khosla. 2008. Irrigation management in greenhouse tomato production in rockwool. Acta Hort. 799:521-528.
  19. Romero, R., J.L. Muriel, and I. Garcia. 2009. Automatic irrigation system in almonds and walnuts trees based on sap flow measurements. Acta Hort. 846:135-142.
  20. Romero, R., J.L. Muriel, I. Garcia, and D.M. de la Pena. 2012. Research on automatic irrigation control: State of the art and recent results. Agr. Water Manag. 114:59-66. https://doi.org/10.1016/j.agwat.2012.06.026
  21. Runia, W.T. and J.J. Amsing. 2001. Disinfection of recirculating water from closed cultivation systems by heat treatment. Acta Hort. 548:215-222.
  22. Park, S.T., G.H. Jung, H.J. Yoo, E.Y. Choi, K.Y. Choi, and Y.B. Lee. 2014. Measuring Water Content Characteristics by Using Frequency Domain Reflectometry Sensor in Coconut Coir Substrate. Protected Hort. Plant Fac. 23:158-166. https://doi.org/10.12791/KSBEC.2014.23.2.158
  23. Schroder, F.G. and J.H. Lieth. 2002. Irrigation control in hydroponics, p. 265-296. In: D. Savvas and H. Passam (eds.). Hydroponic production of vegetables and ornamentals. Embryo Publishing, Athens, Greece.
  24. Seo, B.S. 1999. Future prospects and countermeasures for hydroponics in 21C. Kor. J. Hort. Sci. Technol. 17:796-802.
  25. Sonneveld, C. 2002. Composition of Nutrient solutions, p. 179-210. In: D. Savvas and H. Passam (eds.). Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, Greece.
  26. Starr, J. L. and Paltineanu, I.C. 1998. Soil water dynamics using multisensory capacitance probes in nontraffic interrows of corn. Soil Science Society America Journal 62:114-122. https://doi.org/10.2136/sssaj1998.03615995006200010015x
  27. Thompson, R.B., M. Gallardo, L.C. Valdez, and M.D. Fernandez. 2007. Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors. Agr. Water Manag. 92:13-28. https://doi.org/10.1016/j.agwat.2007.04.009
  28. Warren, S.L. and T.E. Bilderback. 2004. Irrigation timing: Effect on plant growth, photosynthesis, water-use efficiency and substrate temperature. Acta Hort. 644:29-37.
  29. Warren, S.L. and T.E. Bilderback. 2005. More plant per gallon: Getting more out of your water. HortTech. 15:14-18.
  30. Zekki, H., L. Gauthier, and A. Gosselin. 1996. Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. J. Amer. Soc. Hort. Sci. 121:1082-1088.
  31. Zhu, L.Z. and X. Li. 2011. Study of automatic control system for irrigation. Adv. Mat. Res. 219:1463-1467.