DOI QR코드

DOI QR Code

A study of the lipoprotein lipase inhibitory mechanism of Poncirus trifoliata water extracts

탱자 (Poncirus trifoliata)의 lipoprotein lipase 억제메커니즘

  • Lee, Sung Mee (Department of Bio-Health Technology, Kangwon National University) ;
  • Kang, Yun Hwan (Well-being Bioproducts RIC, Kangwon National University) ;
  • Kim, Kyoung Kon (Department of Bio-Health Technology, Kangwon National University) ;
  • Kim, Tae Woo (Well-being Bioproducts RIC, Kangwon National University) ;
  • Choe, Myeon (Department of Bio-Health Technology, Kangwon National University)
  • 이성미 (강원대학교 생명건강공학과) ;
  • 강윤환 (강원대학교 강원웰빙특산물산업화지역혁신센터) ;
  • 김경곤 (강원대학교 생명건강공학과) ;
  • 김태우 (강원대학교 강원웰빙특산물산업화지역혁신센터) ;
  • 최면 (강원대학교 생명건강공학과)
  • Received : 2014.11.04
  • Accepted : 2014.12.16
  • Published : 2015.02.28

Abstract

Purpose: Poncirus trifoliata has been reported to have anti-inflammatory, antioxidant, and immune activities. However, its anti-obesity activity and the mechanism by which the water extract of dried, immature fruit of Poncirus trifoliata (PF-W) acts are not clear. This study suggests a potential mechanism associated with the anti-obesity activity of PF-W. Methods: We measured the effect of PF-W on lipoprotein lipase (LPL) regulation using enzyme-linked immunosorbent assay (ELISA) and an activity assay. The LPL regulation mechanism was examined by reverse transcription polymerase chain reaction (RT-PCR) to measure the mRNA expression of biomarkers related to protein transport and by western blot for analysis of the protein expression of the transcription factor CCAAT-enhancer-binding protein ($C/EBP{\beta}$). Results: The total polyphenol and flavonoid content of PF-W was $52.15{\pm}4.02$ and $6.56{\pm}0.47mg/g$, respectively. PF-W treatment decreased LPL content in media to $58{\pm}5%$ of that in control adipocyte media, and increased LPL content to $117{\pm}3.5%$ of that in control adipocytes, but did not affect the mRNA expression of LPL. PF-W also increased the mRNA expression of sortilin-related receptor (SorLA), a receptor that induces endocytosis and intracellular trafficking of LPL, in a concentration- and time-dependent manner. Finally, cell fractionation revealed that PF-W treatment induced the expression of $C/EBP{\beta}$, a SorLA transcription factor, in the nuclei of 3T3-L1 adipocytes. Conclusion: The LPL secretion and activity assay showed PF-W to be an LPL secretion inhibitor, and these results suggest the potential mechanism of PF-W involving inhibition of LPL secretion through $C/EBP{\beta}$-mediated induction of SorLA expression.

본 연구에는 최근 항비만 소재로 연구되고 있는 건조, 미숙탱자의 물 추출물 (PF-W) 소재를 대상으로 폴리페놀 ($52.15{\pm}4.02mg/g$)과 플라보노이드 ($6.56{\pm}0.47mg/g$) 함량을 측정하고 항산화 활성과 세포독성을 시험한 후, 지방 흡수 제어 가능성을 확인하고자 lipoprotein lipase (LPL)의 억제효능을 배양배지와 세포 내의 LPL 함량, LPL mRNA 발현 그리고 LPL 효소활성측정을 통해 검토하였다. 그 결과 PF-W은 3T3-L1 adipocyte에서 LPL mRNA의 발현과 활성에는 영향이 없었으며, LPL의 분비를 억제하는 것을 알 수 있었다. PF-W의 LPL 분비억제기작을 확인하기 위해 다양한 단백질 이동 관련 유전자의 발현을 확인하였고, 그 결과 LPL의 이동과 분해에 관여하여 세포내 LPL의 활성을 조절하는 것으로 알려진 SorLA의 발현이 증가하는 것을 확인하였다. 이를 조절하는 transcription factor의 발현과 세포핵으로의 이동에 PF-W가 미치는 영향을 검토한 결과 PF-W를 처리함으로써 SorLA promoter 에 작용하는 $C/EBP{\beta}$의 단백질양이 세포핵에서 증가하는 것을 확인할 수 있었다. 본 연구를 통해 PF-W가 SorLA 유전자의 transcription factor인 $C/EBP{\beta}$의 단백질 발현을 세포핵에서 증가시킴으로써 SorLA의 발현이 증가되어 LPL의 분비억제가 가능함을 확인할 수 있었으며 이는 PF-W의 항비만 효과기전을 설명하는 기초자료를 제공하는 것이라 사료된다.

Keywords

References

  1. Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell 1996; 87(3): 377-389. https://doi.org/10.1016/S0092-8674(00)81359-8
  2. Kopelman PG. Obesity as a medical problem. Nature 2000; 404(6778): 635-643. https://doi.org/10.1038/35007508
  3. Visscher TL, Seidell JC. The public health impact of obesity. Annu Rev Public Health 2001; 22: 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  4. Chaput JP, St-Pierre S, Tremblay A. Currently available drugs for the treatment of obesity: Sibutramine and orlistat. Mini Rev Med Chem 2007; 7(1): 3-10. https://doi.org/10.2174/138955707779317849
  5. Collins P, Williams G. Drug treatment of obesity: from past failures to future successes? Br J Clin Pharmacol 2001; 51(1): 13-25. https://doi.org/10.1046/j.1365-2125.2001.01294.x
  6. Li M, Cheung BM. Pharmacotherapy for obesity. Br J Clin Pharmacol 2009; 68(6): 804-810. https://doi.org/10.1111/j.1365-2125.2009.03453.x
  7. Vickers SP, Cheetham SC, Headland KR, Dickinson K, Grempler R, Mayoux E, Mark M, Klein T. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes Metab Syndr Obes 2014; 7: 265-275.
  8. Bae JS, Kim TH. Pancreatic lipase inhibitory and antioxidant activities of Zingiber officinale extracts. Korean J Food Preserv 2011; 18(3): 390-396. https://doi.org/10.11002/kjfp.2011.18.3.390
  9. Kumar P, Bhandari U, Jamadagni S. Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat dietinduced obese rats. Biomed Res Int 2014; 2014: 606021.
  10. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 2009; 297(2): E271-E288. https://doi.org/10.1152/ajpendo.90920.2008
  11. Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J 1992; 287( Pt 2): 337-347. https://doi.org/10.1042/bj2870337
  12. Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, Durante-Montiel I, Sanchez-Rivera G, Valadez-Vega C, Morales-Gonzalez JA. Inflammation, oxidative stress, and obesity. Int J Mol Sci 2011; 12(5): 3117-3132. https://doi.org/10.3390/ijms12053117
  13. Moreno DA, Ilic N, Poulev A, Brasaemle DL, Fried SK, Raskin I. Inhibitory effects of grape seed extract on lipases. Nutrition 2003; 19(10): 876-879. https://doi.org/10.1016/S0899-9007(03)00167-9
  14. Baek J, Lee J, Kim K, Kim T, Kim D, Kim C, Tsutomu K, Ochir S, Lee K, Park CH, Lee YJ, Choe M. Inhibitory effects of Capsicum annuum L. water extracts on lipoprotein lipase activity in 3T3-L1 cells. Nutr Res Pract 2013; 7(2): 96-102. https://doi.org/10.4162/nrp.2013.7.2.96
  15. Lee E. Antihyperlipidemic and antioxidant effects of Poncirus trifoliata. Korean J Plant Resour 2006; 19(2): 273-276.
  16. Shim WS, Back H, Seo EK, Lee HT, Shim CK. Long-term administration of an aqueous extract of dried, immature fruit of Poncirus trifoliata (L.) Raf. suppresses body weight gain in rats. J Ethnopharmacol 2009; 126(2): 294-299. https://doi.org/10.1016/j.jep.2009.08.022
  17. Oh SD, Kim M, Min BI, Choi GS, Kim SK, Bae H, Kang C, Kim DG, Park BJ, Kim CK. Effect of achyranthes bidentata blume on 3T3-L1 adipogenesis and rats fed with a high-fat diet. Evid Based Complement Alternat Med 2014; 2014: 158018.
  18. Lee SM, Kang YH, Kim DJ, Kim KK, Lim JG, Kim TW, Choe M. Comparison of antioxidant and ${\alpha}$-glucosidase inhibition activities among water extracts and sugar immersion extracts of green pepper, purslane and shiitake. J East Asian Soc Diet Life 2014; 24(1): 101-108.
  19. Feng Z, Hai-ning Y, Xiao-man C, Zun-chen W, Sheng-rong S, Das UN. Effect of yellow capsicum extract on proliferation and differentiation of 3T3-L1 preadipocytes. Nutrition 2014; 30(3): 319-325. https://doi.org/10.1016/j.nut.2013.08.003
  20. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998; 56(11): 317-333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  21. Lee GW, Park SM, Yoo YC, Cho YH. Effect of ponciri fructus extracts fermented with ganoderma lucidum on the collagen synthesis and expression of matrix metalloproteinase-1. Korean J Biotechnol Bioeng 2013; 28(2): 106-114.
  22. Klinger SC, Glerup S, Raarup MK, Mari MC, Nyegaard M, Koster G, Prabakaran T, Nilsson SK, Kjaergaard MM, Bakke O, Nykjaer A, Olivecrona G, Petersen CM, Nielsen MS. SorLA regulates the activity of lipoprotein lipase by intracellular trafficking. J Cell Sci 2011; 124(Pt 7): 1095-1105. https://doi.org/10.1242/jcs.072538
  23. Hirayama S, Bujo H, Yamazaki H, Kanaki T, Takahashi K, Kobayashi J, Schneider WJ, Saito Y. Differential expression of LR11 during proliferation and differentiation of cultured neuroblastoma cells. Biochem Biophys Res Commun 2000; 275(2): 365-373. https://doi.org/10.1006/bbrc.2000.3312
  24. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 2004; 36(2): 333-338.
  25. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-747. https://doi.org/10.1093/ajcn/79.5.727
  26. Kim EJ, Choi JY, Yu M, Kim MY, Lee S, Lee BH. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J Food Sci Technol 2012; 44(3): 337-342. https://doi.org/10.9721/KJFST.2012.44.3.337
  27. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013; 2013: 162750.
  28. Goldberg IJ, Merkel M. Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front Biosci 2001; 6: D388-D405. https://doi.org/10.2741/Goldberg
  29. Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2014; 76: 301-331. https://doi.org/10.1146/annurev-physiol-021113-170305
  30. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993; 362(6418): 318-324. https://doi.org/10.1038/362318a0
  31. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 2001; 81(1): 153-208. https://doi.org/10.1152/physrev.2001.81.1.153
  32. Hermey G. The Vps10p-domain receptor family. Cell Mol Life Sci 2009; 66(16): 2677-2689. https://doi.org/10.1007/s00018-009-0043-1
  33. Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM. Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J Biol Chem 1999; 274(13): 8832-8836. https://doi.org/10.1074/jbc.274.13.8832