DOI QR코드

DOI QR Code

Effects of an aqueous extract of purple sweet potato on nonalcoholic fatty liver in high fat/cholesterol-fed mice

고지방/고콜레스테롤 식이를 섭취한 마우스에서 자색고구마 열수추출물 보충이 지방간 저항성에 미치는 영향

  • Lee, You Jin (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Yang, Yoon Kyoung (Department of Nutritional Science and Food Management, Soongeui Women's College) ;
  • Kim, You Jin (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kwon, Oran (Department of Nutritional Science and Food Management, Ewha Womans University)
  • 이유진 (이화여자대학교 식품영양학과) ;
  • 양윤경 (숭의여자대학교 식품영양과) ;
  • 김유진 (이화여자대학교 식품영양학과) ;
  • 권오란 (이화여자대학교 식품영양학과)
  • Received : 2014.11.12
  • Accepted : 2015.01.28
  • Published : 2015.02.28

Abstract

Purpose: Anthocyanins from purple sweet potato (PSP) have been investigated in vitro and in animals and found to have a protective effect against oxidative hepatic damage. In this study, we investigated that aqueous extract of PSP can ameliorate the dysfunction of lipid metabolism in mice fed a high fat/cholesterol diet. Methods: Forty C57BL/6J mice were randomly divided into 5 groups (n = 8) and fed one of the following diets for 8 weeks; normal fat (NF) diet; high fat/cholesterol (HFC) diet; HFC with 1.25% PSP (HFPL) diet; HFC with 2.5% PSP (HFPM) diet; HFC with 5% PSP (HFPH) diet. Results: Non-alcoholic fatty liver was manifested in the HFC group by showing increased levels in plasma alanine aminotransferase (ALT) activity, total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C), increased level of TC and presence of many large lipid droplets in the liver, and increased fat cell size in the HFC group compared with the NF group. However, administration of HFC induced a significant decrease in food intake, resulting in decrease in fat mass. Co-administration of PSP did not lead to reversal of body weight changes, ALT activity, and lipid levels in plasma and the liver, but suppressed excess enlargement of the fat cell size through increasing carnitine palmitoyltransferase-1 (CPT-1) gene expression in the liver. Accordingly, the number of fat droplets in the liver was reduced in PSP administered groups. Conclusion: Taken together, these results suggest that PSP may have a protective effect on the dysfunction of lipid metabolism. Conduct of further studies on the coordinated regulation of PSP for lipid metabolic homeostasis at the liver-adipose tissue axis is needed.

자색고구마 열수추출물의 간 보호 기능을 확인하기 위해 C57BL/6 마우스를 사용하여 시험하였다. 지방간 유도를 위해 8주간 고지방/콜레스테롤 식이를 급여하였으며, 자색고구마 열수추출물은 1.25, 2.5, 5%의 수준으로 식이에 함께 넣어 같은 기간 동안 제공하였다. 간 조직의 병리학적 분석, 혈장 ALT 활성도, 간 및 혈장의 TC 수준을 바탕으로 비알콜성 지방간 모델이 형성되었음을 확인하였다. 고지방/콜레스테롤 식이의 급여는 식이섭취량을 감소시켜 총 에너지 섭취량은 시험군간 차이가 없었으나, 포화지방을 급원으로 하였을 때 지방세포의 비대와 혈장 TC, 간 TC, 간의 지방구를 증가시키는 것으로 관찰되었다. 한편 자색고구마 열수추출물을 고지방/콜레스테롤 식이와 함께 섭취시킨 결과, 고지방/콜레스테롤 식이로 인한 지질대사 이상을 유의하게 변화시키지 못해 혈액 및 간 손상 지표를 개선시키지 못하였으나, 지방조직의 크기는 작게 유지하고 간의 지방구 형성은 억제하는 것으로 관찰되었다. 이상의 결과로 자색고구마 열수추출물은 지질대사 개선을 통해 간 보호 효과를 갖음을 알 수 있었다. 향후에는 자색고구마 열수추출물이 지방세포-간의 상호 지질대사에 미치는 영향을 추가적으로 연구해야 할 것으로 사료된다.

Keywords

References

  1. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI. Mechanism of hepatic insulin resistance in nonalcoholic fatty liver disease. J Biol Chem 2004; 279(31): 32345-32353. https://doi.org/10.1074/jbc.M313478200
  2. Lee E, Kim WJ, Lee YJ, Lee MK, Kim PG, Park YJ, Kim SK. Effects of natural complex food on specific enzymes of serum and liver and liver microstructure of rats fed a high fat diet. J Korean Soc Food Sci Nutr 2003; 32(2): 256-262. https://doi.org/10.3746/jkfn.2003.32.2.256
  3. Ministry of Food and Drug Safety. Influence of dietary intake on non-alcoholic fatty liver disease in Korean. Cheongwon: Ministry of Food and Drug Safety; 2012.
  4. Hna KH, Lee JC, Kim JH, Lee JS. Manufacture and physiological functionality of Korean traditional liquor by using purple-fleshed sweet potato. Korean J Food Sci Technol 2002; 34(4): 673-677.
  5. Rossi A, Serraino I, Dugo P, Di Paola R, Mondello L, Genovese T, Morabito D, Dugo G, Sautebin L, Caputi AP, Cuzzocrea S. Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic Res 2003; 37(8): 891-900. https://doi.org/10.1080/1071576031000112690
  6. Hwang YP, Choi JH, Han EH, Kim HG, Wee JH, Jung KO, Jung KH, Kwon KI, Jeong TC, Chung YC, Jeong HG. Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice. Nutr Res 2011; 31(12): 896-906. https://doi.org/10.1016/j.nutres.2011.09.026
  7. Ramirez-Tortosa C, Andersen OM, Cabrita L, Gardner PT, Morrice PC, Wood SG, Duthie SJ, Collins AR, Duthie GG. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic Biol Med 2001; 31(9): 1033-1037. https://doi.org/10.1016/S0891-5849(01)00618-9
  8. Hwang YP, Choi JH, Yun HJ, Han EH, Kim HG, Kim JY, Park BH, Khanal T, Choi JM, Chung YC, Jeong HG. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food Chem Toxicol 2011; 49(1): 93-99. https://doi.org/10.1016/j.fct.2010.10.002
  9. Han KH, Matsumoto A, Shimada K, Sekikawa M, Fukushima M. Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats fed a cholesterol-rich diet. Br J Nutr 2007; 98(5): 914-921. https://doi.org/10.1017/S0007114507761792
  10. Sakatani M, Suda I, Oki T, Kobayashi S, Kobayashi S, Takahashi M. Effects of purple sweet potato anthocyanins on development and intracellular redox status of bovine preimplantation embryos exposed to heat shock. J Reprod Dev 2007; 53(3): 605-614. https://doi.org/10.1262/jrd.18124
  11. Hwang YP, Choi JH, Choi JM, Chung YC, Jeong HG. Protective mechanisms of anthocyanins from purple sweet potato against tertbutyl hydroperoxide-induced hepatotoxicity. Food Chem Toxicol 2011; 49(9): 2081-2089. https://doi.org/10.1016/j.fct.2011.05.021
  12. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-502.
  13. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226(1): 497-509.
  14. Lovejoy JC. The influence of dietary fat on insulin resistance. Curr Diab Rep 2002; 2(5): 435-440. https://doi.org/10.1007/s11892-002-0098-y
  15. Wildman RP. Healthy obesity. Curr Opin Clin Nutr Metab Care 2009; 12(4): 438-443. https://doi.org/10.1097/MCO.0b013e32832c6db7
  16. Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 2013; 24(4): 613-623. https://doi.org/10.1016/j.jnutbio.2012.12.013
  17. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, Pennathur S, Baskin DG, Heinecke JW, Woods SC, Schwartz MW, Niswender KD. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009; 296(5): E1003-E1012. https://doi.org/10.1152/ajpendo.90377.2008
  18. Nam KS, Kim J, Noh SK, Park JH, Sung EG. Effect of sweet persimmon wine on alcoholic fatty livers in rats. J Korean Soc Food Sci Nutr 2011; 40(11): 1548-1555. https://doi.org/10.3746/jkfn.2011.40.11.1548
  19. Yun TS, Min AK, Kim NK, Kim MK, Cho HC, Kim HS, Hwang JS, Ryu SY, Park KG, Lee IK. Effects of alpha-lipoic acid on SREBP-1c expression in HepG2 cells. J Korean Endocr Soc 2008; 23(1): 27-34. https://doi.org/10.3803/jkes.2008.23.1.27
  20. Marceau P, Biron S, Hould FS, Marceau S, Simard S, Thung SN, Kral JG. Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab 1999; 84(5): 1513-1517. https://doi.org/10.1210/jcem.84.5.5661
  21. Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 2009; 58(3): 550-558. https://doi.org/10.2337/db08-1078