DOI QR코드

DOI QR Code

초음속 2차원 2단 혼합층에서 중간층의 역할

A Study on the Effect of Mid Layer on Supersonic 2D Double Shear Layer

  • 투고 : 2014.05.12
  • 심사 : 2014.11.09
  • 발행 : 2015.02.01

초록

기본 유동 형상은 상대적으로 얇은 중간층이 연료와 공기 사이에 끼어있는 평행 2단 혼합층으로 구성되어 있다. 본 연구는 중간층의 두께 변화에 따른 연소 향상을 수치해석을 통해 조사하였다. 이 경우에, 난류 혼합층에서 열 방출에 의한 효과가 중요하다. 수치해석을 수행하기 위해 완전 보존적인 비정상 2차 시간 정확도의 하부 반복 기법과 2차 총 변화 억제 기법을 k-${\omega}$ 전단응력이동 모델이 결합된 유한체적법과 함께 사용하였다. 다음과 같이 3개의 경우에 대해 해석을 수행하였다. 연료와 공기로 구성된 단일 혼합층, 연료와 공기 사이에 불활성 기체층이 끼어있는 2단 혼합층, 그리고 연료와 공기 사이에 차가운 연료층이 끼어있는 2단 혼합층. 수치해석은 중간 기체층이 1, 2, 4 mm 인 경우에 대하여 수행되었다. 기체층의 총 두께는 4 cm이다. 불활성기체층이 2, 4 mm인 경우와 저온의 연료층이 4 mm인 경우에 단일 혼합층의 경우보다 연소영역이 확대된다.

The basic flow configuration is composed of a plane, double shear layer where relatively thin mid gas layer is sandwiched between air and fuel stream. The present study describes numerical investigations concerning the combustion enhancement according to a variation of mid layer thickness. In this case, the effect of heat release in turbulent mixing layers is important. For the numerical solution, a fully conservative unsteady $2^{nd}$ order time accurate sub-iteration method and $2^{nd}$ order TVD scheme are used with the finite volume method including k-${\omega}$ SST model. The results consists of three categories; single shear layer consists of fuel and air, inert gas sandwiched between fuel and air, cold fuel gas sandwiched between fuel and air. The numerical calculations has been carried out in case of 1, 2, 4 mm of mid layer thickness. The height of total gas stream is 4 cm. The combustion region is broadened in case of inert gas layer of 2, 4 mm thickness and cold fuel layer of 4 mm thickness compared with single shear layer.

키워드

참고문헌

  1. Mcmurtry, P.A., Riley, J.J. and Metcalfe, R. W., "Effects on Heat Release on the Large-Scale Structure in Turbulent Mixing Layers," Journal of Fluid Mechanics, Vol. 199, pp. 297-332, 1989. https://doi.org/10.1017/S002211208900039X
  2. Ragab, S.A. and Wu, J.L., "Linear Instabilities in Two Dimensional Compressible Mixing Layers," Physics of Fluids A, Vol. 1, No. 6, pp. 957-966, 1989. https://doi.org/10.1063/1.857407
  3. Erdos, J., Tamagno, J., Bakos, R. and Trucco, R., "Experiments on Shear Layer Mixing at Hypervelocity Conditions," 30th Aerospace Sciences Meeting and Exhibit, Reno, N.V., U.S.A., pp. 4, 1992.
  4. Goebel, S.G., Dutton, J.C., krier, H. and Renie, J.P., "Mean and Turbulent Velocity Measurements of Supersonic Mixing Layers," Experiments in Fluids, Vol. 8, No. 5, pp. 263-272, 1990. https://doi.org/10.1007/BF00187228
  5. Chakraborty, D., Nagarj Upadhyaya, H.V., Paul, P.J. and Mukunda, H.S., "A Thermo-Chemical Exploration of a Two-Dimensional Reacting Supersonic Mixing Layer," Physics of Fluids, Vol 9, No. 11, pp. 3513-3522, 1997. https://doi.org/10.1063/1.869459
  6. Sung, C.J., Li, J.G., Yu, G. and Law, C. K., "Chemical Kinetics and Self-Ignition in a Model Supersonic Hydrogen-Air Combustor," AIAA Journal, Vol. 37, No. 2, pp. 208-214, 1999. https://doi.org/10.2514/2.715
  7. Umemura, A. and Takihana, Y., "Nonlinear Instabilities Leading to Rapid Mixing and Combustion in Confined Supersonic Double Shear Layer Flow," 27th Symposium on Combustion, Vol. 27, No. 2, pp. 2135-2142, Aug. 1998.
  8. White, F.M., Viscous Fluid Flow, 2nd ed., McGraw Hill, New York, N.Y., U.S.A., 1991.
  9. Hirschfelder. J., Curtiss, C.F., Bird, R.B., Molecular Theory of Gases and Liquids, John Wiley & Sons Inc., New York, N.Y., U.S.A., 1954.
  10. Park, S.H. and Kwon, J.H., "Implementation of k-w Turbulence Models in an Implicit Multigrid Method," AIAA Journal, Vol. 42, No. 7, pp. 1348-1357, 2004. https://doi.org/10.2514/1.2461
  11. Menter, F.R., "Two Equation Eddy Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, 1994. https://doi.org/10.2514/3.12149
  12. Bradswaw, P., Ferriss, D.H. and Atwell, N.P., "Calculation of Boundary Layer Development Using the Turbulent Energy Equation," Journal of Fluid Mechanics, Vol. 28, No. 3, pp. 593-616, 1967. https://doi.org/10.1017/S0022112067002319
  13. Evans, J.S. and Schexnayder, C.J., "Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames," AIAA Journal, Vol 18, No. 2, pp. 188-193, 1980. https://doi.org/10.2514/3.50747
  14. Yee, H.C., "Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications," Journal of Computational Physics, Vol. 68, No.2, pp. 151-179, 1987. https://doi.org/10.1016/0021-9991(87)90049-0
  15. Yee, H.C., "A Class of High Resolution Explicit and Implicit Shock-Capturing Methods," NASA TM-101088, 1989.
  16. Jameson, A. and Turkel, E., "Implicit Schemes and LU Decompositions," Mathematics of Computation, Vol. 37, No. 156, pp. 385-397, 1981. https://doi.org/10.1090/S0025-5718-1981-0628702-9
  17. Pulliam, T.H., "Time Accuracy and the Use of Implicit Methods," AIAA 11th Computational Fluid Dynamics Conference, Orlando, F.L., U.S.A., AIAA paper 93-3360, July 1993.