• Title, Summary, Keyword: Supersonic Combustion

Search Result 142, Processing Time 0.035 seconds

Numerical Simulation of Supersonic Combustion Flows (초음속연소유동의 수치해석연구)

  • Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • /
    • pp.32-39
    • /
    • 2005
  • Recently, renewed interest on the scramjet engine has been demonstrated through the many international activities along the several Asia-Pacific countries. Here, a short review of current activities on supersonic combustion in a scramjet engine will be addressed followed by the discussions on the review of numerical simulation on supersonic combustion phenomena related with scramjet engine combustors and ram accelerator. Emphasis was put on the grid refinement, scheme, unsteadiness and phenomenological differences.

  • PDF

Experimental Study on Supersonic Combustion Phenomena in the Cavity Duct by the Supersonic Inflow Conditions (초음속 유입 유동 조건에 따른 공동을 포함한 덕트 내 초음속 연소 현상에 관한 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.
    • 한국연소학회:학술대회논문집
    • /
    • /
    • pp.209-219
    • /
    • 2006
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Different shock tube fill pressures have various inflow conditions. $15^{\circ}$ inclined hydrogen fuel injection is located before the cavity. Oblique shock is generated at the trailing edge of the cavity and reflects off the top and bottom wall. For non-reacting flow, static pressures in low equivalence ratio are similar to those in no fuel injection. As equivalence ratio is increased, static pressures are increased in the duct. In the similar equivalence ratio, static pressures are increased when total enthalpy is decreased. For reacting flow, the flame is occurred near the cavity. The combustion is weak locally in the middle of the duct. The up and down pressure distribution in the duct means that the supersonic combustion is generated.

  • PDF

Experimental Study on Supersonic Combustor using Inclined Fuel Injection with the Cavity, Part 2 : Pressure Measurement (공동 상류 경사 분사를 이용한 초음속 연소기의 실험적 연구, Part 2 : 압력 측정)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Different shock tube fill pressures have various inflow conditions. $15^{\circ}$ inclined hydrogen fuel injection is located before the cavity. Oblique shock is generated at the trailing edge of the cavity and reflects off the top and bottom wall. For non-reacting flow, static pressures in low equivalence ratio are similar to those in no fuel injection. As equivalence ratio is increased, static pressures are increased in the duct. In the similar equivalence ratio, static pressures are increased when total enthalpy is decreased. For reacting flow, the flame is occurred near the cavity. The combustion is weak locally in the middle of the duct. The up and down pressure distribution in the duct means that the supersonic combustion is generated.

  • PDF

Characteristics of Hypersonic Airbreathing Propulsion System and Preliminary Design of Supersonic Combustion Tunnel (극초음속 추진기관의 특성 및 초음속 연소 풍동 기초 설계)

  • 김정용;허환일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • /
    • pp.35-38
    • /
    • 2001
  • The aerothermodynamic characteristics of SCRamjet engine for the airbreathing populsion system of the next generation flight vehicle are described. As the flow is passing by, combustion caused the total pressure loss and the Mach number decrease, but nozzle exit velocity is large enough to produce net thrust. To simulate supersonic combustion test, preliminary design of ground-based blowdown type supersonic combustion tunnel is attained. Minimum allowable operating pressure and mass flow rate are calculated for the design Mach number of 2.5 at the test section of a supersonic combustion tunnel.

  • PDF

A Study of Supersonic Combustion using Various Liquid Hydrocarbon Fuels

  • Hashimoto, Susumu;Hiramoto, Ayumu;Tsue, Mitsuhiro;Kono, Michikata;Ishikawa, Yuta;Suzuki, Shunsuke;Ujiie, Yasushige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • /
    • pp.340-345
    • /
    • 2008
  • Liquid hydrocarbon fuels are gathering increasing attention as candidates for a scramjet engine fuel. Experimental researches on supersonic combustion of kerosene have been conducted in model scramjet combustors. Through these works, understanding of combustion characteristics of kerosene have been revealed on some level, and so we decided to work on other kinds of liquid hydrocarbon fuels in order to explore effects of fuel properties on supersonic combustion performances, especially self-ignition and flame-holding. In addition, comparing the results of new fuels with kerosene, the relationship between fuel properties and supersonic combustion characteristics was discussed.

  • PDF

Numerical Analysis of Supersonic Combustion Flows according to Fuel Injection Positions near the Cavity (공동주위 분사위치에 따른 초음속 연소 유동해석)

  • Jeong Eunju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.368-373
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the mixing enhancement combustion phenomena according to fuel injector location near the cavity in supersonic flow. Fuel injector location changes the actual length to depth ratio of the cavity in the supersonic combustor. Therefore fuel injector location near the cavity effects different fuel/air mixing efficiency and combustion efficiency.

  • PDF

Supersonic Combustion Experiments of Dual Combustors (이중 연소기의 초음속 연소 실험)

  • Byun, Jong-Ryul;Lee, Sang-Yeon;Moon, Kwan-Ho;Hwang, Ki-Young;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • /
    • pp.386-387
    • /
    • 2012
  • This experimental study is the supersonic combustion of dual combustors in dual combustion ramjet engine. Through the preliminary performance analysis of DCR, the configuration of dual combustors was determined and constructed, supersonic experiments were accomplished.

  • PDF

A Computational Study of the Supersonic Coherent Jet (초음속 코히어런트 제트에 관한 수치해석적 연구)

  • Jeong, Mi-Seon;Sanal Kumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.490-495
    • /
    • 2003
  • In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets.

  • PDF

Performance Analysis Method for Dual Combustion Ramjet Engines (이중연소 램제트엔진의 성능해석 기법)

  • Seo, Bong-Gyun;Yeom, Hyo-Won;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • /
    • pp.326-330
    • /
    • 2011
  • Development and validation of performance analysis model for dual combustion ramjet engines has been performed. A typical performance model for hypersonic intake flow and supersonic mixing and combustion was demonstrated; Taylor-Maccoll equation for coaxial intakes and a quasi-one dimensional reacting flow analysis with CEA chemical equilibrium for supersonic combustion. The results, thermodynamic data of intake and supersonic combustor were validated with CFD numerical results.

  • PDF

Experimental Study on Supersonic Combustion with Parallel Fuel Injection Method in the Cavity (공동 내부로의 평행분사방법을 이용한 초음속 연소의 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Hydrogen Fuel is injected in the cavity parallel with air(or nitrogen) flow. The equivalence ratios in this study are 0.132 and 0.447. Experimental measurements use OH-PLIF near the cavity and pressures in the combustor. For parallel fuel injection case, direct fuel add into cavity leads to increase of cavity pressure. And Flame exists just near the bottom wall for low equivalent ratio. There is no flame in the cavity because of no mixing in it. Compared to the inclined fuel injection, ignition delay length is longer for low equivalence ratio in both case. OH distribution is not a single line but a repeatable fluctuation flame structure by turbulence. Pressure distributions have nothing to do with the fuel injection position.

  • PDF