DOI QR코드

DOI QR Code

Stable Isotopes of Ore Bodies in the Pacitan Mineralized District, Indonesia

인도네시아 파찌딴 광화대 함 금속 광체의 안정동위원소 특성

  • Han, Jin-Kyun (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Choi, Sang-Hoon (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 한진균 (충북대학교 지구환경과학과) ;
  • 최상훈 (충북대학교 지구환경과학과)
  • Received : 2015.01.29
  • Accepted : 2015.02.26
  • Published : 2015.02.28

Abstract

Extensive base-metal and/or gold bearing ore mineralizations occur in the Pacitan mineralized district of the south western portions in the East Java, Indonesia. Metallic ore bodies in the Pacitan mineralized district are classified into two major types: 1) skarn type replacement ore bodies, 2) fissure filling hydrothermal ore bodies. Skarn type replacement ore bodies are developed typically along bedding planes of limestone as wall rock around the quartz porphyry and are composed mineralogically of skarn minerals, magnetite, and base metal sulfides. Hydrothermal ore bodies differ mineralogically in relation to distance from the quartz porphyry as source igneous rock. Hydrothermal ore bodies in the district are porphyry style Cu-Zn-bearing stockworks as proximal ore mineralization and Pb-Zn(-Au)-bearing fissure filling hydrothermal veins as distal ore mineralization. Sulfur isotope compositions in the sulfides from skarn and hydrothermal ore bodies range from 6.7 to 8.2‰ and from 0.1 to 7.9‰, respectively. The calculated ${\delta}^{34}S$ values of $H_2S$ in skarn-forming and hydrothermal fluids are 0.9 to 7.1‰ (5.6-7.1‰ for skarn-hosted sulfides and 0.9-6.8‰ for sulfides from hydrothermal deposits). The change from skarn to hydrothermal mineralization would have resulted in increased $SO_4/H_2S$ ratios and corresponding decreases in ${\delta}^{34}S$ values of $H_2S$. The calculated ${\delta}^{18}O$ water values are: skarn magnetite, 9.6 and 9.7‰; skarn quartz, 6.3-9.6‰; skarn calcite, 4.7 and 5.8‰; stockwork quartz, 3.0-7.7‰; stockwork calcite, 1.2 and 2.0‰; vein quartz, -3.9 - 6.7‰. The calculated ${\delta}^{18}O_{water}$ values decrease progressively with variety of deposit types (from skarn through stockwork to vein), increasing paragenetic time and decreasing temperature. This indicates the progressively increasing involvement of isotopically less-evolved meteoric waters in the Pacitan hydrothermal system. The ranges of ${\delta}D_{water}$ values are from -65 to -88‰: skarn, -67 to -84‰; stockwork, -65 and -76‰; vein, -66 to -88‰. The isotopic compositions of fluids in the Pacitan hydrothermal system show a progressive shift from magmatic hydrothermal dominance in the skarn and early hydrothermal ore mineralization periods toward meteoric hydrothermal dominance in the late ore mineralization periods.

인도네시아 동부 자바의 남서익부에 위치하는 파찌딴 광화대 금속광화작용은 스카른형 교대광체와 열극을 충진 발달하는 열수 맥상광체로 크게 분류할 수 있다. 스카른 형 교대광체는 올리고신 후기 퇴적암류 중 석회암층을 따라 관계화성암체인 석영반암 주변에 발달한다. 본 광체는 스카른광물과 함께 자철석 및 천금속 황화광물이 수반된다. 열수광체로는 관계화성암체인 석영반암으로 부터의 거리를 기준으로 근지성 함 동-아연 망상광체와 원지성 함 연-아연(-금) 맥상광체가 발달 분포한다. 황화광물의 황 동위원소 값으로부터 계산된 $H_2S$의 황 동위원소 값은 스카른광체의 경우 5.6-7.1‰, 열수광체의 경우 0.9-6.8‰ 이었다. 이는 원지성 열수 맥상 광체의 후기 광화작용으로 진행하면서 파찌딴 열수계 내 $SO_4/H_2S$의 비가 증가하면서 $H_2S$의 황동위원소 값이 감소한 것으로 확인된다. 광화대 내 산소 동위원소 값은 스카른 광체 내 자철석, 9.6과 9.7‰; 스카른 광체 내 석영, 6.3-9.6‰; 스카른 광체 내 방해석, 4.7 and 5.8‰; 열수 망상광체 내 석영, 3.0-7.7‰; 열수 망상광체 내 방해석, 1.2 and 2.0‰; 열수 맥상광체 내 석영, -3.9 - 6.7‰로서, 계산된 ${\delta}^{18}O_{water}$ 값은 근지성 스카른 및 열수 망상광체에서 원지성 열수 맥상광체에 이르면서 감소하는 경향성을 보인다. 열수계 ${\delta}D_{water}$ 값은 광체 유형에 관계없이 -65 to -88‰의 값을 보여준다. 이러한 산소 수소 안정동위원소 값의 경향성은 근지성 스카른 및 열수 망상광체 초기 광화작용을 지배한 마그마 기원의 열수 또는 상대적으로 낮은 water/rock 비 값을 갖는 환경하에서 동위원소 교환반응을 이루어 평형상태에 이른 열수가 풍부한 파찌딴 열수계 내에 광화작용의 진행 및 관계화성암과의 거리에 따라 높은 water/rock 비 값을 갖는 환경하에서 동위원소 교환반응을 이루어 진 열수 또는 동위원소 교환반응이 거의 이루어지지 않은 천수의 유입이 점증하며 광화작용이 진행되었음을 의미 한다.

Keywords

References

  1. Choi, S.G., So, C.S., Choi, S.H. and Han, J.K. (1995) Genetic environments of hydrothermal vein deposits in the Pacitan District, East Java, Indonesia. Econ. Environ. Geol., v.28, p.109-121.
  2. Clayton, R.N. and Mayeda, T.K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta, v.27, p.43-52. https://doi.org/10.1016/0016-7037(63)90071-1
  3. Craig, H. (1961) Isotopic variations in meteoric waters. Science, v.133, p.1702-1703. https://doi.org/10.1126/science.133.3465.1702
  4. Friedman, I. and O'Neil, J.R. (1977) Data of geochemistry, Chapter KK, Compilation of stable isotope fractionation factors of geochemical interest. U.S. Geol. Surv. Prof. Paper 440-KK, 12p.
  5. Grinenko, V.A. (1962) Preparation of sulfur dioxide for isotopic analysis. Zhurnal Neorganicheskoi Khimii, v.7, p.2478-2483.
  6. Hall, W.E. and Friedman, I. (1963) Composition of fluid inclusion, Cave-in-Rock fluorite district, Illinois and Upper Mississippi Valley zinc-lead district. Econ, Geol., v.53, p.886-911.
  7. Han, J.K. and Choi, S.H. (2012) Ore Geology of Skarn Ore Bodies in the Kasihan Area, East Java, Indonesia, Econ. Environ. Geol., v.45, p.109-121.
  8. Javoy, M. (1977) Stable isotopes and geothermometry. Jour. Geol., v.133, p.609-636. https://doi.org/10.1144/gsjgs.133.6.0609
  9. Lattanzi, P., Rye, D.M. and Rice, J.M. (1980) Behaviour of $^{13}C$ and $^{18}O$ in carbonates during contact metamorphism at Marysvill, Montana: Implications for isotope systmatics in impure dolomitic limestones. Amer. J. Sci., v.280, p.890-906. https://doi.org/10.2475/ajs.280.9.890
  10. Matsuhisa, Y., Goldsmith, R. and Clayton, R.N. (1979) Oxygen isotope fractionation in the system quartzalbite-anorthite-water.Geochim. et Cosmochim. Acta, v.43, p.1131-1140. https://doi.org/10.1016/0016-7037(79)90099-1
  11. McCrea, J.M. (1950) The isotope chemistry of carbonates and a paleotemperature scale. J. Chem. Phys., v.18, p.849-857. https://doi.org/10.1063/1.1747785
  12. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits (2nd ed.). John Wiely, p.509-567.
  13. Richards, J.P. and Kerrich, R. (1993) The Porgera gold mine, Papua New Guinea: Magmatic hydrothermal to epithermal evolution of an alkalic-type precious metal deposit. Econ, Geol., v.88, p.1017-1052. https://doi.org/10.2113/gsecongeo.88.5.1017
  14. Rye, R.O. (1966) The carbon, hydrogen, and oxygen isotopic compositions of the hydrothermal fluids responsible for the lead-zinc deposits at Providencia, Zacatecas, Mexico. Econ. Geol., v.61, p.1399-1427. https://doi.org/10.2113/gsecongeo.61.8.1399
  15. Shelton, K.L. (1983) Composition and origin of ore-forming fluids in a carbonate-hosted porphyry copper and skarn deposit: A fluid inclusion and stable isotope study of Mines Gaspe, Quebec, Econ. Geol., v.78, p.387-421. https://doi.org/10.2113/gsecongeo.78.3.387
  16. Shelton, K.L., So, C.S., Rye, D.M. and Park, M.E. (1986) Geologic, sulfur isotope, and fluid inclusion studies of the Sannae W-Mo mine, Republic of Korea: Comparison of sulfur isotope systematics in Korean W deposits. Econ. Geol., v.81, p.430-446. https://doi.org/10.2113/gsecongeo.81.2.430
  17. Shelton, K.L., Taylor, R.P. and So, C.S. (1987) Stable isotope studies of the Dae Hwa tungsten-molybdenum mine, Republic of Korea: Evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal systems. Econ. Geol., v.82, p.471-481. https://doi.org/10.2113/gsecongeo.82.2.471
  18. So, C.S., Rye, D.M. and Shelton, K.L. (1983a) Carbon, hydrogen, oxygen, and sulfur isotope and fluid inclusion study of the Weolag tungsten-molybdenum deposit, Republic of Korea: Fluid histories of metamorphic and ore-forming events. Econ. Geol., v.78, p.1551-1573. https://doi.org/10.2113/gsecongeo.78.8.1551
  19. So, C.S., Shelton, K.L. and Rye, D.M. (1983b) Geologic, sulfur isotopic, and fluid inclusion study of th Ssang Jeon tungsten mine, Republic of Korea. Econ. Geol., v.78, p.157-163. https://doi.org/10.2113/gsecongeo.78.1.157
  20. So, C.S. and Shelton, K.L. (1983) A sulfur isotope and fluid inclusion study of the Cu-W-bearing tourmaline breccia pipe, Ilkwang mine, Republic of Korea. Econ. Geol., v.78, p.326-332. https://doi.org/10.2113/gsecongeo.78.2.326
  21. Taylor, H.P. Jr. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol., v.69, p.843-883. https://doi.org/10.2113/gsecongeo.69.6.843
  22. Van Bemmelen, R.S. (1949) The Geology of the Indonesia, v. IA, 1st edition. Govt. Printing Office, The Hague, p.104-136.