DOI QR코드

DOI QR Code

THE JONES POLYNOMIAL OF KNOTS WITH SYMMETRIC UNION PRESENTATIONS

  • Received : 2014.05.23
  • Published : 2015.03.01

Abstract

A symmetric union is a diagram of a knot, obtained from diagrams of a knot in the 3-space and its mirror image, which are symmetric with respect to an axis in the 2-plane, by connecting them with 2-tangles with twists along the axis and 2-tangles with no twists. This paper presents an invariant of knots with symmetric union presentations, which is called the minimal twisting number, and the minimal twisting number of $10_{42}$ is shown to be two. This paper also presents a sufficient condition for non-amphicheirality of a knot with a certain symmetric union presentation.

Keywords

References

  1. M. Eisermann, The Jones polynomial of ribbon links, Geom. Topol. 13 (2009), no. 2, 623-660. https://doi.org/10.2140/gt.2009.13.623
  2. M. Eisermann and C. Lamm, Equivalence of symmetric union diagrams, J. Knot Theory Ramifications 16 (2007), no. 7, 879-898. https://doi.org/10.1142/S0218216507005555
  3. J. A. Hillman, Alexander Ideals of Links, Lecture Notes in Mathematics, Vol. 895. Springer-Verlag, Berlin-New York, 1981.
  4. V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103-111. https://doi.org/10.1090/S0273-0979-1985-15304-2
  5. L. H. Kauffman, State models and the Jones polynomials, Topology 26 (1987), no. 3, 395-407. https://doi.org/10.1016/0040-9383(87)90009-7
  6. S. Kinoshita and H. Terasaka, On unions of knots, Osaka J. Math. 9 (1957), 131-153.
  7. C. Lamm, Symmetric unions and ribbon knots, Osaka J. Math. 37 (2000), no. 3, 537- 550.
  8. C. Lamm, Symmetric unions and ribbon knots, Symmetric union presentations for 2-bridge ribbon knots, arXiv:math.GT/ 0602395, 2006.
  9. W. B. R. Lickorish, An Introduction to Knot Theory, Graduate Texts in Mathematics, Vol. 175, Springer-Verlag, New York, 1997.
  10. W. B. R. Lickorish and K. C. Millett, Some evaluations of link polynomials, Comment. Math. Helv. 61 (1986), no. 3, 349-359. https://doi.org/10.1007/BF02621920
  11. P. Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429-472. https://doi.org/10.2140/gt.2007.11.429
  12. H. Murakami, A recursive calculation of the Arf invariant of a link, J. Math. Soc. Japan 38 (1986), no. 2, 335-338. https://doi.org/10.2969/jmsj/03820335
  13. K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187-194. https://doi.org/10.1016/0040-9383(87)90058-9
  14. L. Watson, Knots with identical Khovanov homology, Algebr. Geom. Topol. 7 (2007), 1389-1407. https://doi.org/10.2140/agt.2007.7.1389