References
- N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Dover Publications, Inc., New York, 1993.
- J. L. Boersema, The range of united K-theory, J. Funct. Anal. 235 (2006), no. 2, 701- 718.
- N. Chevrot, E. Fricain, and D. Timotin, The characteristic function of a complex sym- metric contraction, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2877-2886. https://doi.org/10.1090/S0002-9939-07-08803-X
- S. R. Garcia and D. E. Poore, On the closure of the complex symmetric operators: compact operators and weighted shifts. , J. Funct. Anal. 264 (2013), no. 3, 691-712. https://doi.org/10.1016/j.jfa.2012.11.009
- S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315. https://doi.org/10.1090/S0002-9947-05-03742-6
- S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931. https://doi.org/10.1090/S0002-9947-07-04213-4
- S. R. Garcia and W. Ross, Recent progress on truncated Toeplitz operators, Blaschke products and their applications, 275-319, Fields Inst. Commun., 65, Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-5341-3_15
- S. R. Garcia and W. R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251-1260. https://doi.org/10.1016/j.jfa.2009.04.005
- T. M. Gilbreath and W. R. Wogen, Remarks on the structure of complex symmetric operators, Integral Equations Operator Theory 59 (2007), no. 4, 585-590. https://doi.org/10.1007/s00020-007-1528-7
- K. Guo, Y. Ji, and S. Zhu, A C∗-algebra approach to complex symmetric operators, Trans. Amer. Math. Soc. (to appear).
- K. Guo and S. Zhu, A canonical decomposition of complex symmetric operators, J. Operator Theory (to appear).
- D. A. Herrero, Approximation of Hilbert Space Operators. Vol. 1, second ed., Pitman Research Notes in Mathematics Series, vol. 224, Longman Scientific & Technical, Harlow, 1989.
- C. G. Li and T. T. Zhou, Skew symmetry of a class of operators, Banach J. Math. Anal. 8 (2014), no. 1, 279-294. https://doi.org/10.15352/bjma/1381782100
- C. G. Li and S. Zhu, Skew symmetric normal operators, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2755-2762. https://doi.org/10.1090/S0002-9939-2013-11759-4
-
N. C. Phillips and M. G. Viola, A simple separable exact
$C^∗$ -algebra not anti-isomorphic to itself, Math. Ann. 355 (2013), no. 2, 783-799. https://doi.org/10.1007/s00208-011-0755-z - H. Radjavi and P. Rosenthal, Invariant Subspaces, second ed., Dover Publications Inc., Mineola, NY, 2003.
- P. J. Stacey, Antisymmetries of the CAR algebra, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6439-6452, With an appendix by J. L. Boersema and N. C. Phillips. https://doi.org/10.1090/S0002-9947-2011-05263-3
- S. M. Zagorodnyuk, On a J-polar decomposition of a bounded operator and matrices of J-symmetric and J-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no. 2, 11-36. https://doi.org/10.15352/bjma/1297117238
- S. M. Zagorodnyuk, On the complex symmetric and skew-symmetric operators with a simple spectrum, Symmetry, Integrability and Geometry: Methods and Applications 7 (2011), 1-9.
- S. Zhu, Approximate unitary equivalence to skew symmetric operators, Complex Anal. Oper. Theory, 2014, doi: 10.1007/s11785-014-0369-z.
- S. Zhu, Skew symmetric weighted shifts, Banach J. Math. Anal. (to appear).
- S. Zhu and C. G. Li, Complex symmetry of a dense class of operators, Integr. Equat. Oper. Th. 73 (2012), no. 2, 255-272. https://doi.org/10.1007/s00020-012-1957-9
- S. Zhu and C. G. Li, Complex symmetric weighted shifts, Trans. Amer. Math. Soc. 365 (2013), no.1, 511-530. https://doi.org/10.1090/S0002-9947-2012-05642-X
Cited by
- ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES vol.52, pp.6, 2015, https://doi.org/10.4134/JKMS.2015.52.6.1271