DOI QR코드

DOI QR Code

Fast Cardiac CINE MRI by Iterative Truncation of Small Transformed Coefficients

  • Park, Jinho (Department of Electrical Engineering, Kwangwoon University) ;
  • Hong, Hye-Jin (Department of Electrical Engineering, Kwangwoon University) ;
  • Yang, Young-Joong (Department of Electrical Engineering, Kwangwoon University) ;
  • Ahn, Chang-Beom (Department of Electrical Engineering, Kwangwoon University)
  • Received : 2015.03.04
  • Accepted : 2015.03.20
  • Published : 2015.03.31

Abstract

Purpose: A new compressed sensing technique by iterative truncation of small transformed coefficients (ITSC) is proposed for fast cardiac CINE MRI. Materials and Methods: The proposed reconstruction is composed of two processes: truncation of the small transformed coefficients in the r-f domain, and restoration of the measured data in the k-t domain. The two processes are sequentially applied iteratively until the reconstructed images converge, with the assumption that the cardiac CINE images are inherently sparse in the r-f domain. A novel sampling strategy to reduce the normalized mean square error of the reconstructed images is proposed. Results: The technique shows the least normalized mean square error among the four methods under comparison (zero filling, view sharing, k-t FOCUSS, and ITSC). Application of ITSC for multi-slice cardiac CINE imaging was tested with the number of slices of 2 to 8 in a single breath-hold, to demonstrate the clinical usefulness of the technique. Conclusion: Reconstructed images with the compression factors of 3-4 appear very close to the images without compression. Furthermore the proposed algorithm is computationally efficient and is stable without using matrix inversion during the reconstruction.

Keywords

References

  1. Lee VS, Cardiovascular MRI: Physical Principles to Practical Protocols. Philadelphia: Lippincott Williams & Wilkins, 2006.
  2. Carpenter TA, Williams EJ. MRI - from basic knowledge to advanced strategies: hardware. Eur Radiol 1999;9:1015-1019 https://doi.org/10.1007/s003300050787
  3. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003;50:1031-1042 https://doi.org/10.1002/mrm.10611
  4. Schmitt M, Potthast A, Sosnovik DE, et al. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magn Reson Med 2008;59:1431-1439 https://doi.org/10.1002/mrm.21598
  5. Liu F, Zhao H, Crozier S. On the induced electric field gradients in the human body for magnetic stimulation by gradient coils in MRI. IEEE Trans Biomed Eng 2003;50:804-815 https://doi.org/10.1109/TBME.2003.813538
  6. Glover PM. Interaction of MRI field gradients with the human body. Phys Med Biol 2009;54:R99-R115 https://doi.org/10.1088/0031-9155/54/21/R01
  7. Schoenberg SO, Dietrich O, Reiser MF, Parallel imaging in clinical MR applications. Berlin: Springer, 2007
  8. Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ. MR fluoroscopy: technical feasibility. Magn Reson Med 1988;8:1-15 https://doi.org/10.1002/mrm.1910080102
  9. Doyle M, Walsh EG, Blackwell GG, Pohost GM. Block regional interpolation scheme for k-Space (BRISK): a rapid cardiac imaging technique. Magn Reson Med 1995;33:163-170 https://doi.org/10.1002/mrm.1910330204
  10. Jones RA, Haraldseth O, Muller TB, Rinck PA, Oksendal AN. K-space substitution: a novel dynamic imaging technique. Magn Reson Med 1993;29:830-834 https://doi.org/10.1002/mrm.1910290618
  11. Oesterle C, Strohschein R, Kohler M, Schnell M, Hennig J. Benefits and pitfalls of keyhole imaging, especially in first-pass perfusion studies. J Magn Reson Imaging 2000;11:312-323
  12. Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2006;52:1289-1306 https://doi.org/10.1109/TIT.2006.871582
  13. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195 https://doi.org/10.1002/mrm.21391
  14. Baraniuk RB. Compressive Sensing IEEE Sign Proc Mag 2007;24:118-124
  15. Jung H, Ye JC, Kim EY. Improved k-t BLAST and k-t SENSE using FOCUSS. Phys Med Biol 2007;52:3201-3226 https://doi.org/10.1088/0031-9155/52/11/018
  16. Liang D, DiBella EVR, Chen R-R, Ying L. k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection. Magn Reson Med 2012;68:41-53 https://doi.org/10.1002/mrm.23197
  17. Jung H, Ye JC. Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: What we can learn from video compression techniques. Int J Imaging Syst Technol 2010;20:81-98 https://doi.org/10.1002/ima.20231
  18. Usman M, Atkinson D, Odille F, et al. Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magn Reson Med 2013;70:504-516 https://doi.org/10.1002/mrm.24463
  19. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med 2010;64:767-776 https://doi.org/10.1002/mrm.22463
  20. Feng L, Grimm R, Block KT, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2013;72:707-717
  21. Ahn CB. A New Compressed Sensing Technique by Iterative Truncation of Small Transformed Coefficients. Proc. ESMRMB 2012;e-Poster 641
  22. Bluemke DA, Boxerman JL, Atalar E, McVeigh ER. Segmented K-space cine breath-hold cardiovascular MR imaging: Part 1. Principles and technique. AJR Am J Roentgenol 1997;169:395-400 https://doi.org/10.2214/ajr.169.2.9242742
  23. Park J, Yoon JH, Yang YJ, Ahn CB. Cardiac magnetic resonance imaging using Multi-physiological intelligent trigger system. J Korean Soc Magn Reson Med 2014;18:244-252 https://doi.org/10.13104/jksmrm.2014.18.3.244
  24. Margosian P, Faster MR imaging-imaging with half the data. Proc SMRM 1985;1024-1025
  25. Bernstein MA, King KF, Zhou XJ. Handbook of MRI Pulse Sequences. Amsterdam: Elsevier, 2004.
  26. Lingala SG, Hu Y, DiBella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 2011;30:1042-1054 https://doi.org/10.1109/TMI.2010.2100850
  27. Acharya T, Tsai P-S. JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures. New Jersey: John Wiley & Sons, 2005
  28. Gonzalez RC, Woods RE. Digital Image Processing. 3th ed. New Jersey: Pearson Education, 2010
  29. Vasanawala S, Murphy M, Alley M, et al. Practical parallel imaging compressed sensing MRI: Summary of two years of experience in acceleration body MRI of pediatric patients. Proc IEEE Int Symp Biomed Imaging 2011;1039-1043
  30. Sharma SD, Fong CL, Tzung BS, Law M, Nayak KS. Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing. Invest Radiol 2013;48:638-645 https://doi.org/10.1097/RLI.0b013e31828a012d

Cited by

  1. Biases in the Assessment of Left Ventricular Function by Compressed Sensing Cardiovascular Cine MRI vol.23, pp.2, 2019, https://doi.org/10.13104/imri.2019.23.2.114
  2. 전이학습을 수행한 신경망을 사용한 압축센싱 심장 자기공명영상 vol.23, pp.4, 2015, https://doi.org/10.7471/ikeee.2019.23.4.1408
  3. Network slimming for compressed‐sensing cardiac cine MRI vol.57, pp.7, 2015, https://doi.org/10.1049/ell2.12084
  4. Blended-Transfer Learning for Compressed-Sensing Cardiac CINE MRI vol.25, pp.1, 2015, https://doi.org/10.13104/imri.2021.25.1.10