DOI QR코드

DOI QR Code

Regional Gray Matter Volume Reduction Associated with Major Depressive Disorder: A Voxel-Based Morphometry

  • Tae, Woo-Suk (Neuroimaging Lab., Neuroscience Research Institute, Kangwon National University School of Medicine)
  • Received : 2014.12.10
  • Accepted : 2015.03.25
  • Published : 2015.03.31

Abstract

Background and Purpose: The association between the low emotional regulation and the brain structural change of major depressive disorder (MDD) has been proposed, but the voxel-based morphometry (VBM) studies on female MDD are rare. The purpose of the present study was to show the regional volume changes of gray matter (GM) in female patients with MDD by optimized VBM. Methods: To control subjects homogeneity, twenty female MDD patients and age, sex matched 21 normal controls were included for the VBM analysis. To identify the change of regional gray matter volume (GMV), the optimized VBM was performed with T1 MRIs. The amounts of gray/white matter and intracranial cavity volumes (ICV) were measured. The analysis of covariance (ANCOVA) and partial correlation analyses covariate with age and ICV were applied for VBM. Results: The age and ICV distributions were similar between the two groups. In the ANCOVA, the total GMV of MDD was smaller than that of normal controls. In the VBM, regional GMV was relatively decreased in the limbic system (amygdalae, ambient gyri, hippocampi heads, subiculum, posterior parahippocampal gyri, pulvinar nuclei, dorsal posterior cingulate gyri, and left pregenual cingulate gyrus). The lingual gyri, short insular gyri, right fusiform gyrus, and right inferior frontal gyrus were also showed decreased regional GMV. Conclusion: The results of this study indicate that the female MDD is mainly associated with the structural deficits of the limbic system and limbic system related cortices, which were known to the center of emotions.

Keywords

References

  1. Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003;289:3095-3105 https://doi.org/10.1001/jama.289.23.3095
  2. Kandel ER. Disorder of mood: depression, mania, anxiety disorder. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, New York; 2000:1213-1216
  3. Belmaker RH, Agam G. Major depressive disorder. N Engl J Med 2008;358:55-68 https://doi.org/10.1056/NEJMra073096
  4. Botteron KN, Raichle ME, Drevets WC, Heath AC, Todd RD. Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol Psychiatry 2002;51:342-344 https://doi.org/10.1016/S0006-3223(01)01280-X
  5. Campbell S, MacQueen G. An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 2006;19:25-33 https://doi.org/10.1097/01.yco.0000194371.47685.f2
  6. Lacerda AL, Keshavan MS, Hardan AY, et al. Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biol Psychiatry 2004;55:353-358 https://doi.org/10.1016/j.biopsych.2003.08.021
  7. Neumeister A, Charney DS, Drevets WC. Hippocampus, VI. Depression and the Hippocampus. Am J Psychiatry 2005;162:1057 https://doi.org/10.1176/appi.ajp.162.6.1057
  8. Mak AK, Wong MM, Han SH, Lee TM. Gray matter reduction associated with emotion regulation in female outpatients with major depressive disorder: a voxel-based morphometry study. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:1184-1190 https://doi.org/10.1016/j.pnpbp.2009.06.025
  9. Ashburner J, Friston KJ. Voxel-based morphometry - the methods. Neuroimage 2000;11:805-821 https://doi.org/10.1006/nimg.2000.0582
  10. Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 2005;162:2233-2245 https://doi.org/10.1176/appi.ajp.162.12.2233
  11. Vasic N, Walter H, Hose A, Wolf RC. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord 2008;109:107-116 https://doi.org/10.1016/j.jad.2007.11.011
  12. Taki Y, Kinomura S, Awata S, et al. Male elderly subthreshold depression patients have smaller volume of medial part of prefrontal cortex and precentral gyrus compared with age-matched normal subjects: a voxelbased morphometry. J Affect Disord 2005;88:313-320 https://doi.org/10.1016/j.jad.2005.08.003
  13. Yoshikawa E, Matsuoka Y, Yamasue H, et al. Prefrontal cortex and amygdala volume in first minor or major depressive episode after cancer diagnosis. Biol Psychiatry 2006;59:707-712 https://doi.org/10.1016/j.biopsych.2005.08.018
  14. Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry 2009;195:393-402 https://doi.org/10.1192/bjp.bp.108.055046
  15. Hamilton JP, Siemer M, Gotlib IH. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Mol Psychiatry 2008;13:993-1000 https://doi.org/10.1038/mp.2008.57
  16. Frodl T, Jager M, Smajstrlova I, et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci 2008;33:423-430
  17. Pitychoutis PM, Papadopoulou-Daifoti Z. Of depression and immunity: does sex matter? Int J Neuropsychopharmacol 2010;13:675-689 https://doi.org/10.1017/S1461145710000465
  18. First MB SR, Gibbon M, Williams JB. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version. Biometrics Research Department, New York State Psychiatric Institute, New York; 2001
  19. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry 1961;4:561-571 https://doi.org/10.1001/archpsyc.1961.01710120031004
  20. Hamilton, M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62 https://doi.org/10.1136/jnnp.23.1.56
  21. Kruggel F. MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage 2006;30:1-11 https://doi.org/10.1016/j.neuroimage.2005.09.063
  22. Wolf H, Kruggel F, Hensel A, Wahlund LO, Arendt T, Gertz HJ. The relationship between head size and intracranial volume in elderly. subjects. Brain Res 2003;973:74-80 https://doi.org/10.1016/S0006-8993(03)02552-6
  23. Eritaia J, Wood SJ, Stuart GW, et al. An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med 2000;44:973-977 https://doi.org/10.1002/1522-2594(200012)44:6<973::AID-MRM21>3.0.CO;2-H
  24. MacLullich AM, Ferguson KJ, Deary IJ, Seckl JR, Starr JM, Wardlaw JM. Intracranial capacity and brain volumes are associated with cognition in healthy elderly men. Neurology 2002;59:169-174 https://doi.org/10.1212/WNL.59.2.169
  25. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21-36 https://doi.org/10.1006/nimg.2001.0786
  26. Cuadra MB, Cammoun L, Butz T, Cuisenaire O, Thiran JP. Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 2005;24:1548-1565 https://doi.org/10.1109/TMI.2005.857652
  27. Duvernoy HM, ed. The human brain: surface, threedimensional sectional anatomy, and MRI. New York: Springer-Verlag, 1991
  28. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002;15: 870-878 https://doi.org/10.1006/nimg.2001.1037
  29. Ballmaier M, Toga AW, Blanton RE, et al. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. Am J Psychiatry 2004;161:99-108 https://doi.org/10.1176/appi.ajp.161.1.99
  30. Drevets WC. Neuroimaging Studies of Mood Disorders. Biol Psychiatry 2000;48:813-829 https://doi.org/10.1016/S0006-3223(00)01020-9
  31. Taylor WD, Steffens DC, McQuoid DR, et al. Smaller orbital frontal cortex volumes associated with functional disability in depressed elders. Biol Psychiatry 2003;53:144-149 https://doi.org/10.1016/S0006-3223(02)01490-7
  32. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatmentresistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry 1998;172:527-532 https://doi.org/10.1192/bjp.172.6.527
  33. Taki Y, Kinomura S, Awata S, et al. Male elderly subthreshold depression patients have smaller volume of medial part of prefrontal cortex and precentral gyrus compared with age-matched normal subjects: a voxelbased morphometry. J Affect Disord 2005;88:313-320 https://doi.org/10.1016/j.jad.2005.08.003
  34. Tang Y, Wang F, Xie G, et al. Reduced ventral anterior cingulated and amygdale volumes in medication-naive females with major depressive disorder: A voxel-based morphometric magnetic resonance imaging study. Psychiatry Res 2007;156:83-86 https://doi.org/10.1016/j.pscychresns.2007.03.005
  35. Egger K, Schocke M, Weiss E, et al. Pattern of brain atrophy in elderly patients with depression revealed by voxel-based morphometry. Psychiatry Res 2008;164:237-244 https://doi.org/10.1016/j.pscychresns.2007.12.018
  36. Bergouignan L, Chupin M, Czechowska Y, et al. Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? Neuroimage 2009;45:29-37 https://doi.org/10.1016/j.neuroimage.2008.11.006
  37. Campbell S, Marriott M, Nahmias C, et al. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 2004;161:598-607 https://doi.org/10.1176/appi.ajp.161.4.598
  38. Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 2004;161:1957-1966 https://doi.org/10.1176/appi.ajp.161.11.1957
  39. Tae WS, Kim SS, Lee KU, Nam EC, Choi JW, Park JI. Hippocampal shape deformation in female patients with unremitting major depressive disorder. AJNR Am J Neuroradiol 2011;32:671-676 https://doi.org/10.3174/ajnr.A2367
  40. MacQueen GM, Campbell S, McEwen BS, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci U S A 2003;100:1387-1392 https://doi.org/10.1073/pnas.0337481100
  41. Bremner JD. Does stress damage the brain? Biol Psychiatry 1999;45:797-805 https://doi.org/10.1016/S0006-3223(99)00009-8
  42. Jacobs BL, Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 2000;5:262-269 https://doi.org/10.1038/sj.mp.4000712
  43. Jacobs BL. Adult brain neurogenesis and depression. Brain Behav Immun 2002;16:602-609 https://doi.org/10.1016/S0889-1591(02)00015-6
  44. Hastings RS, Parsey RV, Oquendo MA, Arango V, Mann JJ. Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology 2004;29:952-959 https://doi.org/10.1038/sj.npp.1300371
  45. Takahashi T, Yucel M, Lorenzetti V, et al. Volumetric MRI study of the insular cortex in individuals with current and past major depression. J Affect Disord 2010;121:231-238 https://doi.org/10.1016/j.jad.2009.06.003
  46. Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 1996;22:229-244 https://doi.org/10.1016/S0165-0173(96)00011-2
  47. Giard MH, Peronnet F. Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 1999;11:473-490 https://doi.org/10.1162/089892999563544
  48. Macaluso E, Frith CD, Driver J. Modulation of human visual cortex by crossmodal spatial attention. Science 2000;289:1206-1208 https://doi.org/10.1126/science.289.5482.1206
  49. Schmithorst VJ, Holland SK. The effect of musical training on the neural correlates of math processing: a functional magnetic resonance imaging study in humans. Neurosci Lett 2004;354:193-196 https://doi.org/10.1016/j.neulet.2003.10.037
  50. Bavelier D, Neville HJ. Cross-modal plasticity: where and how? Nat Rev Neurosci 2002;3:443-452 https://doi.org/10.1038/nrn848
  51. Falchier A, Clavagnier S, Barone P, Kennedy H. Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci 2002;22:5749-5759 https://doi.org/10.1523/JNEUROSCI.22-13-05749.2002
  52. Radua J, Phillips ML, Russell T, et al. Neural response to specific components of fearful faces in healthy and schizophrenic adults. Neuroimage 2010;49:939-946 https://doi.org/10.1016/j.neuroimage.2009.08.030
  53. Allison T, McCarthy G, Nobre A, Puce A, Belger A. Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cereb Cortex 1994;4:544-554 https://doi.org/10.1093/cercor/4.5.544
  54. Chan SW, Norbury R, Goodwin GM, Harmer CJ. Risk for depression and neural responses to fearful facial expressions of emotion. Br J Psychiatry 2009;194:139-145 https://doi.org/10.1192/bjp.bp.107.047993
  55. Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp 1999;7:254-266 https://doi.org/10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
  56. Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage 2000;11:805-821 https://doi.org/10.1006/nimg.2000.0582
  57. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851 https://doi.org/10.1016/j.neuroimage.2005.02.018
  58. Kruggel F. MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage 2006;30:1-11 https://doi.org/10.1016/j.neuroimage.2005.09.063
  59. Chey J, Na DG, Tae WS, Ryoo JW, Hong SB. Medial temporal lobe volume of nondemented elderly individuals with poor cognitive functions. Neurobiol Aging 2006;27:1269-1279 https://doi.org/10.1016/j.neurobiolaging.2005.07.020
  60. Tae WS, Kim SS, Lee KU, Nam EC. Effects of various intracranial volume measurements on hippocampal volumetry and modulated voxel-based morphometry. J Korean Soc Magn Reson Med 2009;13:63-73
  61. Cuadra MB, Cammoun L, Butz T, Cuisenaire O, Thiran JP. Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 2005;24:1548-1565 https://doi.org/10.1109/TMI.2005.857652