DOI QR코드

DOI QR Code

Contrast-enhanced Magnetic Resonance Imaging of Brain Metastases at 7.0T versus 1.5T: A Preliminary Result

  • Paek, Sun Ha (Department of Neurosurgery, Seoul National University Hospital, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine) ;
  • Kim, Jhi-Hoon (Department of Radiology, Seoul National University College of Medicine) ;
  • Choi, Sung-Hong (Department of Radiology, Seoul National University College of Medicine) ;
  • Yoon, Tae-Jin (Department of Radiology, Seoul National University College of Medicine) ;
  • Son, Young Don (Neuroscience Research Institute, Gachon University of Medicine and Science) ;
  • Kim, Dong Gyu (Department of Neurosurgery, Seoul National University Hospital, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine) ;
  • Cho, Zang-Hee (Neuroscience Research Institute, Gachon University of Medicine and Science) ;
  • Sohn, Chul-Ho (Department of Radiology, Seoul National University College of Medicine)
  • Received : 2014.12.28
  • Accepted : 2015.02.23
  • Published : 2015.03.31

Abstract

Purpose: To compare the depiction of brain metastases on contrast-enhanced images with 7.0 tesla (T) and at 1.5T MRI. Materials and Methods: Four consecutive patients with brain metastases were scanned on 7.0T whole-body scanner and 1.5T MRI. A 3D T1-weighted gradient echo sequence (3D T1-GRE) at 1.5T (voxel size = $0.9{\times}0.9{\times}1.5mm^3$ after double-dose, gadoterate meglumine, Gd-DOTA) was compared to a 7.0T 3D T1-GRE sequence (voxel size = $0.4{\times}0.4{\times}0.8mm^3$, single-dose Gd-DOTA) in four patients after a 5 minute delay. The number of contrast-enhancing metastases in MPRAGE images was compared in each patient by two radiologists in consensus. We measured contrast ratio of enhancing brain metastases and white matter in 1.5T and 7.0T. Results: In all four patients 7.0T 3D T1-GRE images after single-dose Gd-DOTA and 1.5T after double-dose Gd-DOTA depicted 11 brain metastases equally. In the quantitative analysis of contrast ratios of enhancing brain metastases and white matter, the 1.5T 3D T1-GRE after double-dose showed an increased contrast ratio compared to 7.0T 3D T1-GRE after single-dose ($0.961{\pm}0.571$ versus $0.885{\pm}0.494$; n = 11 metastases). But this difference was not statistically significant (P = 0.711). Conclusion: Our preliminary results indicate that 7.0T single-dose Gd-enhanced images were not different to 1.5T double-dose Gd-enhanced images for the detection of brain metastases.

Keywords

References

  1. Klos KJ, O'Neill BP. Brain metastases. Neurologist 2004;10:31-46 https://doi.org/10.1097/01.nrl.0000106922.83090.71
  2. Arnold SM, Patchell RA. Diagnosis and management of brain metastases. Hematol Oncol Clin North Am 2001;15:1085-1107, vii https://doi.org/10.1016/S0889-8588(05)70269-0
  3. Sanchez de Cos J, Sojo Gonzalez MA, Montero MV, Perez Calvo MC, Vicente MJ, Valle MH. Non-small cell lung cancer and silent brain metastasis. Survival and prognostic factors. Lung Cancer 2009;63:140-145 https://doi.org/10.1016/j.lungcan.2008.04.013
  4. Smalley SR, Schray MF, Laws ER Jr, O'Fallon JR. Adjuvant radiation therapy after surgical resection of solitary brain metastasis: association with pattern of failure and survival. Int J Radiat Oncol Biol Phys 1987;13:1611-1616 https://doi.org/10.1016/0360-3016(87)90154-4
  5. Davis PC, Hudgins PA, Peterman SB, Hoffman JC Jr. Diagnosis of cerebral metastases: double-dose delayed CT vs contrast-enhanced MR imaging. AJNR Am J Neuroradiol 1991;12:293-300
  6. Engh JA, Flickinger JC, Niranjan A, Amin DV, Kondziolka DS, Lunsford LD. Optimizing intracranial metastasis detection for stereotactic radiosurgery. Stereotact Funct Neurosurg 2007;85:162-168 https://doi.org/10.1159/000099075
  7. Jena A, Taneja S, Talwar V, Sharma JB. Magnetic resonance (MR) patterns of brain metastasis in lung cancer patients: correlation of imaging findings with symptom. J Thorac Oncol 2008;3:140-144 https://doi.org/10.1097/JTO.0b013e318161d775
  8. Runge VM, Kirsch JE, Burke VJ, et al. High-dose gadoteridol in MR imaging of intracranial neoplasms. J Magn Reson Imaging 1992;2:9-18 https://doi.org/10.1002/jmri.1880020103
  9. Sze G, Johnson C, Kawamura Y, et al. Comparison of singleand triple-dose contrast material in the MR screening of brain metastases. AJNR Am J Neuroradiol 1998;19:821-828
  10. Hawighorst H, Debus J, Schreiber W, et al. Contrastenhanced magnetization transfer imaging: improvement of brain tumor conspicuity and delineation for radiosurgical target volume definition. Radiother Oncol 1997;43:261-267 https://doi.org/10.1016/S0167-8140(97)00068-6
  11. Komada T, Naganawa S, Ogawa H, et al. Contrast-enhanced MR imaging of metastatic brain tumor at 3 tesla: utility of T(1)-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence. Magn Reson Med Sci 2008;7:13-21 https://doi.org/10.2463/mrms.7.13
  12. Trattnig S, Pinker K, Ba-Ssalamah A, Nobauer-Huhmann IM. The optimal use of contrast agents at high field MRI. Eur Radiol 2006;16:1280-1287 https://doi.org/10.1007/s00330-006-0154-0
  13. Paek SH, Son YD, Chung HT, Kim DG, Cho ZH. Clinical application of 7.0 T magnetic resonance images in Gamma Knife radiosurgery for a patient with brain metastases. J Korean Med Sci 2011;26:839-843 https://doi.org/10.3346/jkms.2011.26.6.839
  14. Yuh WT, Christoforidis GA, Koch RM, et al. Clinical magnetic resonance imaging of brain tumors at ultrahigh field: a state-of-the-art review. Top Magn Reson Imaging 2006;17:53-61 https://doi.org/10.1097/RMR.0b013e3180300404
  15. Nobauer-Huhmann IM, Ba-Ssalamah A, Mlynarik V, et al. Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla. Invest Radiol 2002;37:114-119 https://doi.org/10.1097/00004424-200203000-00003
  16. Schwindt W, Kugel H, Bachmann R, et al. Magnetic resonance imaging protocols for examination of the neurocranium at 3 T. Eur Radiol 2003;13:2170-2179 https://doi.org/10.1007/s00330-003-1984-7
  17. Krautmacher C, Willinek WA, Tschampa HJ, et al. Brain tumors: full- and half-dose contrast-enhanced MR imaging at 3.0 T compared with 1.5 T--Initial Experience. Radiology 2005;237:1014-1019 https://doi.org/10.1148/radiol.2373041672
  18. Pfeuffer J, van de Moortele PF, Yacoub E, et al. Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 2002;17:272-286 https://doi.org/10.1006/nimg.2002.1103
  19. Vaughan JT, Garwood M, Collins CM, et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 2001;46:24-30 https://doi.org/10.1002/mrm.1156
  20. Ugurbil K, Adriany G, Andersen P, et al. Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 2003;21:1263-1281 https://doi.org/10.1016/j.mri.2003.08.027
  21. Gizewski ER, de Greiff A, Maderwald S, Timmann D, Forsting M, Ladd ME. fMRI at 7 T: whole-brain coverage and signal advantages even infratentorially? Neuroimage 2007;37:761-768 https://doi.org/10.1016/j.neuroimage.2007.06.005
  22. Biswas J, Nelson CB, Runge VM, et al. Brain tumor enhancement in magnetic resonance imaging: comparison of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at 1.5 versus 3 tesla. Invest Radiol 2005;40:792-797 https://doi.org/10.1097/01.rli.0000187609.78338.dc
  23. Lupo JM, Banerjee S, Hammond KE, et al. GRAPPA-based susceptibility-weighted imaging of normal volunteers and patients with brain tumor at 7 T. Magn Reson Imaging 2009;27:480-488 https://doi.org/10.1016/j.mri.2008.08.003
  24. Monninghoff C, Maderwald S, Theysohn JM, et al. Imaging of brain metastases of bronchial carcinomas with 7 T MRI - initial results. Rofo 2010;182:764-772 https://doi.org/10.1055/s-0029-1245440
  25. Yuh WT, Tali ET, Nguyen HD, Simonson TM, Mayr NA, Fisher DJ. The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. AJNR Am J Neuroradiol 1995;16:373-380
  26. Akeson P, Larsson EM, Kristoffersen DT, Jonsson E, Holtas S. Brain metastases--comparison of gadodiamide injectionenhanced MR imaging at standard and high dose, contrastenhanced CT and non-contrast-enhanced MR imaging. Acta Radiol 1995;36:300-306 https://doi.org/10.1177/028418519503600318
  27. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol 2007;188:586-592 https://doi.org/10.2214/AJR.06.1094
  28. Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 2007;243:148-157 https://doi.org/10.1148/radiol.2431062144
  29. Thomsen HS. Nephrogenic systemic fibrosis: A serious late adverse reaction to gadodiamide. Eur Radiol 2006;16:2619-2621 https://doi.org/10.1007/s00330-006-0495-8