DOI QR코드

DOI QR Code

Applicability Evaluation of Nitritation with Various Wastewater

다양한 하수를 대상으로 아질산화 반응 적용성 평가

  • Im, Jiyeol (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Gil, Kyungik (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 임지열 (고려대학교 건축사회환경공학과) ;
  • 길경익 (서울과학기술대학교 건설시스템디자인공학과)
  • Received : 2014.10.07
  • Accepted : 2014.10.10
  • Published : 2015.02.28

Abstract

As the seriousness of water pollution resulted from nitrogen is being magnified, research has been conducted to reduce nitrogen in sewage as well as wastewater. Particularly research on innovative nitrogen removal methods that are based on the reaction of nitritation and are economically feasible and eco-friendly has been receiving attention. However, research on the applicability and efficiency of the methods based on the reaction of nitritation has not been completely done yet. Accordingly, the current study has analyzed the characteristics of sewage flowing into municipal wastewater treatment plants, primary clarifier supernatant, recycled water, and livestock wastewater and also operated a laboratory-level reactor. The result shows that recycled water and livestock wastewater contain higher-concentration nitrogen than other kinds of sewage, so they increase nitrogen loading in the water treatment line. And the result of operating a reactor shows that because of ammonium nitrogen low concentration, sewage and primary clarifier supernatant do not induce the reaction of nitritation. Also, there exist differences in the conditions of retention time inducing the reaction of nitritation by the types of sewage, and this seems to be attributed to organic compound and ammonium nitrogen concentration. Among the kinds of sewage inducing the reaction of nitritation, anaerobic digester supernatant indicates the highest efficiency.

질소에 의한 수질 오염의 심각성이 부각되면서 하 폐수 내 질소제거를 위한 연구가 수행되고 있다. 특히 아질산화 반응을 기반으로 하는 경제적이며 친환경적인 장점을 지닌 혁신적인 질소 제거 공법에 관한 연구가 주목받고 있다. 하지만 아질산화 반응을 기반으로 하는 공법의 현장 적용성 및 효율화 방안에 관한 연구는 완전히 이루어지고 있지 않은 실정이다. 본 연구에서는 하수처리장 유입 하수, 최초 침전지 상등액, 반류수 그리고 가축분뇨의 특성분석 및 실험실 규모 반응조를 운전하였다. 반류수 및 가축분뇨의 경우 다른 하수에 비해 고농도의 질소를 함유한 것으로 나타나 수처리 계통 질소 부하를 증가시키는 것으로 나타났다. 반응조 운전 결과 낮은 암모니아성 질소의 농도로 인해 유입 하수와 최초 침전지 상등액의 경우에는 아질산화 반응이 유도되지 않음을 확인하였다. 또한 하수 종류 별로 아질산화 반응이 유도되는 체류시간 조건이 차이를 보였는데 이는 유기물 및 암모니아성 질소 농도에 의한 것으로 판단된다. 아질산화 반응이 유도된 하수 중 혐기 소화 상등액이 가장 높은 효율을 보이는 것으로 나타났다.

Keywords

References

  1. Anthonisen, A C, Loehr, R C, Prakasam, T B, and Srinath, E G (1976). Inhibition of nitrification by ammonia and nitrous acid, J. of Water Pollution Control Federation, 48(5), pp. 835-852.
  2. APHA, AWWA and WEF (1998). Standard method for examination of water and wastewater. 20th edition, Washington DC, US.
  3. Gali, A, Dosta, J, Lopez-palau, S, and Mata-alvarez, J (2008). SBR technology for high ammonium loading rates, Wat. Sci. & Tech., 58(2), pp. 467-472. https://doi.org/10.2166/wst.2008.408
  4. Gil, K, Choi, E, Yun, Z, Lee, J, Ha, J, and Park, J (2002). The nomographic design approach to recycled water treatment by the nitritation process, Wat. Sci. & Tech., 46(11-12), pp. 85-92.
  5. Gil, K and Choi, E (2004). Nitrogen removal by recycle water nitritation as an attractive alternative for retrofit technologies in MWTPs, Wat. Sci. & Tech., 49( 5-6), pp. 39-46.
  6. Im, J and Gil, K (2011a). Evaluation of Nitritation of High Strength Ammonia with Variation of SRT and Temperature using Piggery Wastewater, J. of Korean society on water environment, 27(5), pp. 563-571. [Korean Literature]
  7. Im, J and Gil, K (2011b). Effect of anaerobic digestion on the high rate of nitritation, treating piggery wastewater, J. of Environmental Sciences, 23(11), pp. 1794-1800. https://doi.org/10.1016/S1001-0742(10)60614-6
  8. Im, J and Gil, K (2013). Changes in the Characteristics of Organic Compounds Depending on the Nitritation Efficiency, Environ Earth Sci., 70, pp. 1297-1305. https://doi.org/10.1007/s12665-013-2216-3
  9. Im, J, Jung, J, Bae, H, Kim, D, and Gil K (2014). Correlation between Nitrite Accumulation and Concentration of AOB in a Nitritation reactor, Environ Earth Sci., 72, pp. 289-297. https://doi.org/10.1007/s12665-014-3285-7
  10. Li, H B, Cao, H B, Li, Y P, Zhang, Y, and Liu, H R (2010). Effect of Organic Compounds on Nitrite Accumulation during the Nitrification Process for Coking Wastewater, Wat Sci Tech., 62(9), pp. 2096-2105. https://doi.org/10.2166/wst.2010.371
  11. Yang, Q, Liu, X H, Peng, Y Z, Wang, S Y, Sun, H W, and Gu, S B (2009). Advanced Nitrogen Removal via Nitrite from Municipal Wastewater in a Pilot-plant Sequencing Batch Reactor, Wat Sci Tech, 59(12), pp. 2371-2377. https://doi.org/10.2166/wst.2009.304
  12. van de Graaf, A A, de Bruijn, P, Robertson, L A, Kuenen, J G, and Mulder, A (1991). Biological oxidation of ammonium under anoxic conditions : ANAMMOX process, Intern. Symp. Environ. Biotechnol., 2. pp. 667-669.
  13. van Kempen. R, ten Have, C C R, Meijer. S C F, Mulder. J W, and Duin. J O J (2001). SHARON process evaluated for improved wastewater treatment plznt nitrogen effluent quality, Wat Sci Tech., 52(4), pp. 55-62.
  14. van Dongen, U, Jetten, M C M, and van Loosdrecht, M C M (2001). The SHARON-ANAMMOX process for the treatment of ammonium rich wastewater, Wat Sci Tech., 44(1), pp. 153-160.
  15. van Loosdrecht, M C M and Jetten, M C M. (1998). Microbiological conversions in nitrogen removal, Wat Sci Tech., 38, pp. 1-7.

Cited by

  1. Analysis of COD fraction and change of COD in nitritation reactor using various wastewater vol.17, pp.4, 2015, https://doi.org/10.17663/JWR.2015.17.4.421