DOI QR코드

DOI QR Code

Isolation and Characterization of Dextrans Produced by Leuconostoc sp. strain JYY4 from Fermented Kimchi

  • Gu, Ji-Joong (Department of Oriental Health Care, Jonngbu University) ;
  • Ha, Yoo-Jin (Division of Food and Nutrition, Chungnam National University) ;
  • Yoo, Sun-Kyun (Department of Food and Biotechnology, Joongbu University)
  • 투고 : 2015.11.23
  • 심사 : 2015.12.16
  • 발행 : 2015.12.30

초록

Dextran is a generic term for a bacterial exopolysaccharide synthesized from sucrose and composed of chains of D-glucose units connected by ${\alpha}$-1,6-linkages by using dextransucrases. Dextran could be used as vicosifying, stabilizing, emulsifying, gelling, bulking, dietary fiber, prebiotics, and water holding agents. We isolated new strain capable of producing dextran from Korean traditional kimchi and identified as Leuconostoc sp. strain JYY4. Batch fermentation was conducted in bioreactor with a working volume of 3 L. The media was MMY and 15% (w/v) sucrose. Mineral medium consisted of $3.0g\;KH_2PO_4$, $0.01g\;FeSO_4$, $H_2O$, $0.01g\;MnSO_4$, $4H_2O$, $0.2g\;MgSO_4\;7H_2O$, 0.01 g NaCl, $0.05g\;CaCl_2$ per 1 liter deionized water. The pH of media was initially adjusted to 6.0. The inoculation rate was 1.0% (v/v) of the working volume. Temperature was maintained at $28^{\circ}C$. The agitation rate was 100 rpm. The production pattern of dextran was associated with the cell growth. After 24 hr dextran reached its highest concentration of 59.4 g/L. The sucrose was consumed completely after 40 hr. Growth reached stationery phase when sucrose became limiting, regardless of the presence of fructose or mannitol. When the specific growth rate was 0.54 hr-1, utilization averaged 5.8 g/L-hr. The yield and productivity of dextran were 80% and 2.0 g/L-hr, respectively. Dextrans produced by were separated to two different size by an alcohol fraction method. The size of high molecular weight dextran (45% alcohol, v/v), less soluble dextran, was between MW 500,000 and 2,000,000. Soluble dextran (55% alcohol, v/v) was between 70,000 and 150,000. The molecular weight average of total dextran (70% alcohol, v/v) was between 150,000 to 500,000. The enzymatic hydrolyzates of total dextran of ATCC 13146 showed branched dextrans by Penicillium dextranase contained of glucose, isomaltose, isomaltotriose, and isomaltooligosaccharides greater than DP4 (degree of polymerization) that had branch points. Compounds greater than DP4 were branched isomaltooligosaacharides. Hydrolysates by the Lipomyces dextranase produced the same composition of oligosaccharides as those by Penicillin dextranase.

키워드

참고문헌

  1. J. Cerning, Exocellular polysaccharides produced by lactic acid bacteria, FEMS. Microbiol. Rev., 87, 113 (1990). https://doi.org/10.1111/j.1574-6968.1990.tb04883.x
  2. A. H. Ensminger, M. E. Ensminger, J. E. Konlande and J. R. K. Robson, "Food Nutrition Encyclopedia", 2th ed. CRC Press, Boca Raton, New York, U.S.A. (1994).
  3. J. F. Robyt, "Encyclopedia of Polymer Science and Technology", p. 752, 4th ed. John Wiley & Sons, New York, U.S.A. (1986).
  4. N. H. Maina, M. Tenkanen, H. Maaheimo, R. Juvonen, L. Virkki, NMR spectro-scopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confuse, Carbohyd. Res., 343, 1446 (2008). https://doi.org/10.1016/j.carres.2008.04.012
  5. M. Naessens, A. Cerdobbel, W. Soetaert, E. J. Vandamme, Leuconostoc dextran-sucrase and dextran: production, properties and applications, J. Chem. Technol. Biotechnol,. 80, 845 (2005). https://doi.org/10.1002/jctb.1322
  6. N. H. Main, L. Virkki, H. Pynnonen, H. Maaheimo, M. Tenkanen, Structural analysis of enzyme resistant isomaltooligosaccharides reveals the elongation of ${\alpha}$-(1,3)-linked branches in Weissella confuse dextran, Biomacromolecules., 12, 409 (2011). https://doi.org/10.1021/bm1011536
  7. J. F. Robyt, S. Y. Lee, J. H. Lee, Y. M. Kim, Dextran molecular size and degree ofbranching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512 FMCM dextransucrase, Carbohyd. Res., 338, 1183 (2003). https://doi.org/10.1016/S0008-6215(03)00148-4
  8. D. Kim, J. F Robyt, Selection of Leuconostoc mesenteroides mutants constitutive for glucansucrases, Enzyme. Microbiol. Technol., 16, 1010 (1994). https://doi.org/10.1016/0141-0229(94)90134-1
  9. D. Kim, K. H. Park, J. F. Robyt, Acarbose effect for dextran synthesis, acceptor and disproportionation reactions of Leuconostoc mesenteroides B-512FMCM dextransucrase, J. Microbiol. Biotechnol., 8, 287 (1998).
  10. D. Kim, Y. M. Kim, M. R. Park, D. H. Park, Modification of Acetobacter xylinum bacterial cellulose using dextransucrase and alternansucrase, J. Microbio. Biotechnol., 9, 704 (1999).
  11. D. Kim, Y. M. Kim, M. R. Park, H. J. Ryu, D. H. Park, J. F. Robyt Enzymatic modification of cellulose using Leuconostoc mesenteroides B-742CBM dextransucrase, J. Microbiol. Biotechnol., 9, 529 (1999).
  12. D. de Belder, "Medical application of dextran and its derivatives". In Polysaccharides in medicinal applications. New York, NY: Marcel Dekker.(1996).
  13. A. Aman, N. N. Siddiqui, S. A. U. Qader, Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1, Carbohydrate. Polymers., 87, 910 (2012). https://doi.org/10.1016/j.carbpol.2011.08.094
  14. P. Duboc, B. Mollet, Applications of exopolysaccharides in the dairy industry, International. Dairy. Journal., 11, 759 (2011).
  15. J. Han, F. Hang, B. Guo, Z. Liu, C. You, Z. Wu, Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose, Carbohydrate. Polymers., 112, 556 (2014). https://doi.org/10.1016/j.carbpol.2014.06.035
  16. N. H. Maina, L. Pitkanen, S. Heikkinen, P. Tuomainen, L. Virkki, M. Tenkanen, Challenges in analysis of high-molar mass dextrans: Comparison of HPSEC AsFlFFF and DOSY NMR spectroscopy, Carbohydrate. Polymers., 99, 199 (2014). https://doi.org/10.1016/j.carbpol.2013.08.021
  17. C. M. Hasler, Functional foods: the western perspective, Nutr. Rev., 54, 6 (1996).
  18. Z. Djouzi, C. Andrieux, V. Pelenc, S. Somarriba, F. Popot, P. F. Monsan, D. Szylit, Degradation and fermentation of a-gluco oligosaccharides by bacteria strains from -human colon: in vitro and in vivo studies in gnotobiotic rats, J. Appl. Bacteriol., 79, 117 (1995). https://doi.org/10.1111/j.1365-2672.1995.tb00924.x
  19. M. Hirayama, H. Hidaka, Production and utilization of microbial fructans, pp. 273. In: Science and Technology of Fructans. Susuki M, Chatterton NJ (eds). CRC Press, New York, NY, USA(1993).
  20. D. G. Hoover, Bifidobacteria: activity and potential benefits, Food. Technol., 47, 120 (1993).
  21. F. D. Day, S. K. Yoo, Natural glucans: production and prospects. pp. 292. In: Biopolymers from polysaccharides and agroproteins, ACS symposium series 786. Gross RA, Scholz C(eds). American Chemical Society, Washington, DC, MD, USA(2001).
  22. T. Kurki, M. Tsuda, T. Imananka, Continuous production of pannose by immobilised neopulluanase, Ferment. J. Bioeng., 73, 198 (1992). https://doi.org/10.1016/0922-338X(92)90160-V
  23. M. R. Remaud, M. Willemot, P. Sarcabal, G. P. Montalk, P. Monsan, Glucansucrases: molecular engineering and oligosaccharides synthesis, J. Mol. Catal., 10, 117 (2000). https://doi.org/10.1016/S1381-1177(00)00119-3
  24. H. T. Takata, S. Kuriki, S. Okada, Y. Takesada, M. Iizuka, N. Minamiura, T. Imanaka, Action of neopullulanase: neopullanase catalyzes both hydrolysis and transcosylation at a a-(1${\rightarrow}$4)-and a-(1${\rightarrow}$6)-glucosidic linkages, J. Biol. Chem., 267, 18447 (1992).
  25. S. K. Yoo, D. H. Kim, D. F. Day, Highly branched glucooligosaccharide and maniitol production by mixed culture fermentation of leuconostoc mesenteroides and lipomyces starkeyi, J. Microbiol. Biotechnol., 11, 700 (2001).
  26. Y. K. Kim, M. J. Kim, C. S. Park, K. H. Park, Modification of Sorbitol by transglycosylation using Bacillus stearothermophilus Maltogenic Amylase, Food. Sci. Biotechnol., 11, 401 (2002).
  27. Y. H. Chang, J. H. Yeom, K. H. Jung, B. C. Chang, J. H. Shin and S. K. Yoo, Optimization of an extrancellular dextranase production from Lipomyces starkeyi KCTC 17343 and analysis of its dextran hydrolysates, J. life. Science., 19, 457 (2009). https://doi.org/10.5352/JLS.2009.19.4.457
  28. Y. Yang, Q. Peng, Y. Guo, Y. Han, H. xiao, Z. Zhou, Isolation and characterization of dextran produced by Leuconostoc citreum NM105 from manchurian sauerkraut, Carbohydrate. Polymers., 133, 365 (2015). https://doi.org/10.1016/j.carbpol.2015.07.061
  29. F. Sarwat, S. A. U. Qader, A. Aman, N. Ahmed, Production & Characterization of a Unique Dextran from an Indifenous Leuconostoc mesenteroides CMG713, Int. J. Biol. Sci., 4(6):379-386.doi:10.7150/ijbs.4.379 (2008).
  30. R. Z. Ahmed, K. Siddiqui, M. Arman, N. Ahmed, Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3, Carbohydrate. Polymers., 90, 441 (2012). https://doi.org/10.1016/j.carbpol.2012.05.063