DOI QR코드

DOI QR Code

Diagnostic Ex-Vivo Assay of glucose Using Diabetic-Control Circuits

  • Ly, Suw Young (Biosensor Research Institute, Seoul National University of Science & Technology) ;
  • Lee, Chang Hyun (Division of General Education, Pyeongtaek University) ;
  • Yoo, Hai-Soo (East Sea Research Institute/KIOST)
  • Received : 2015.11.13
  • Accepted : 2015.12.30
  • Published : 2015.12.30

Abstract

For ex-vivo diabetic control, the voltammetric diagnosis of glucose (GU) was conducted with a modified carbon nanotube paste electrode, using handheld analytical circuits. The optimum analytical conditions were attained within the 0.5-4.0 ug/L working range and at the 0.06 ug/L detection limit, which system was interfaced to the feedback circuits and was applied to human urine for diabetic-patient diagnosis. It can be used for ex-vivo flow control analysis, vascular flow detection and other medicinal assays. The equations of the patients' urine are y=36.65x+12.13 and $R^2=0.987$, those of the healthy person of y= 2.5x+10.9 and $R^2=0.928$ (patients: 118 ug/L; healthy person: 12.34 ug/L).

Keywords

References

  1. D. Schubert, Glucose metabolism and Alzheimer's disease, Ageing Research Reviews (4)240-257(2005) https://doi.org/10.1016/j.arr.2005.02.003
  2. T. Huang, A. Warsinke, O. V. K. Skorobogat'ko, A. Makower,. T. Kuwana, F.W. Scheller and A Bienzyme Carbon Paste Electrode for the Sensitive Detection of NADPH and the Measurement of Glucose-6-phosphate Dehydrogenase, Electroanalysis. 11(5)295-300(1999). https://doi.org/10.1002/(SICI)1521-4109(199905)11:5<295::AID-ELAN295>3.0.CO;2-0
  3. S. Suye, T. Matsuura, T. Kimura, H. Zheng, T. Hori, Y. Amano and H. Katayama, Amperometric DNA sensor using gold electrode modified with polymerized mediator by layer-by-layer adsorption, Microelectron Eng (81) 441-447(2005). https://doi.org/10.1016/j.mee.2005.03.045
  4. V. Srinivasan, V. Pamula, M. Pollack and R. Fair, A digital microfluid Biosensor for Multianalyte detection, IEEE 329-333 (2003).
  5. R. Russel, M. Pishko, C. Gefrides and G cote, A Fluopescent Glucose Assay using Pol-L-Lysine And Calcium Alginate Microencapsuled tric-succinyl-concanavalin A and Fitc-Dextran, IEEE 2858-2860 (1998).
  6. T. Ferri, S. Maida, A. Poscia and R. Santucci, A Glucose Biosensor Based on Electro-Enzyme Catalyzed Oxidation of Glucose Using a HRP-GOD Layered Assembly, Electroanalysis, 13 (14) 1198-1202(2001). https://doi.org/10.1002/1521-4109(200110)13:14<1198::AID-ELAN1198>3.0.CO;2-H
  7. P. C. Pandey, S. Upadhyay and H. C. Pathak, A new glucose sensor based on encapsulated glucose oxidase within organically modified sol--gel glass, Sensor Actuat B-chem (60)83-89(1999). https://doi.org/10.1016/S0925-4005(99)00246-4
  8. P. C. Pandey, S. Upadhyay, I. Tiwari, and V. S. Tripathi, A Novel Ormosil Based Electrocatalytic Biosensor for Glucose Ethanol Based on Dehydrogenase Modifed Electrode, Electroanalysis 13(10) 820-825 (2001) https://doi.org/10.1002/1521-4109(200106)13:10<820::AID-ELAN820>3.0.CO;2-6
  9. J. S. Velterop and F. Vos, A Rapid and Inexpensive Microplate Assay for the Enzymatic Determination of Glucose, Fructose, Sucrose, L-Malate and Citrate in Tomato (Lycopersicon esculentum) Extracts and in Orange Juice, 2001 John Wiley & Sons, Ltd. ,Phytochem. Anal. (12)299-304 (2001). https://doi.org/10.1002/pca.598
  10. S. A. M. Marzouk, H. E. M. Sayour, A. M. Ragab, W. E. Cascio, S. S. M. Hassan, A Simple FIA-System for Simultaneous Measurements of Glucose and Lactate with Amperometric Detection, Electroanal 2000 (16) 1304-1311(2000). https://doi.org/10.1002/1521-4109(200011)12:16<1304::AID-ELAN1304>3.0.CO;2-B
  11. C. Puig-Lleixa, C. JimeAneza, J. Bartrolo and A. polyurethane D photopolymeric membrane for amperometric glucose biosensor construction, Sensors Actuatchem (72) 56-62(2001). https://doi.org/10.1016/S0925-4005(00)00626-2
  12. V. M. T Spackman and A. H Cobb, An enzyme-based method for the rapid determination of sucrose, glucose and fructose in sugar beet roots and the effects of impact damage and postharvest storage in clamps, Sci Food Agric, 80-86(2001).
  13. Othman A. and Farghaly, Direct and simultaneous voltammetric analysis of heavy metals in tap water samples at Assiut city: an approach to improve the analysis time for nickel and cobalt determination at mercury film electrode, Microchem J (75) 119-131(2003). https://doi.org/10.1016/S0026-265X(03)00090-0
  14. S. C. C. Monterroso, H. M. Carapuca, J. E. J. Simao and A.C. Duarte, Optimisation of mercury film deposition on glassy carbon electrodes: evaluation of the combined effects of pH, thiocyanate ion and deposition potential, Anal Chim Acta (503) 203-212(2004). https://doi.org/10.1016/j.aca.2003.10.034
  15. Helena M. Carapuca, Sandra C.C. Monterroso, L. S. Rocha and A. C. Duarte, Simultaneous determination of copper and lead in seawater using optimised thin-mercury film electrodes in situ plated in thiocyanate media, Talanta (64)566-569(2004). https://doi.org/10.1016/j.talanta.2004.03.018
  16. J. M. Zen, F.shienhsu, N. Y. Chi, S. Y. Huang and M.J. Chung, Effect of model organic compounds on squrare-wave voltammetric stripping analysis at the Nafion/ chelating agent mercury film electrodes, Anal Chim Acta (310)407-417 (1995). https://doi.org/10.1016/0003-2670(95)00038-2
  17. J. T. Wu, Y. Huang, J. Z. Zhou, J. Luo and Z. h. Lin, Electrochemical behaviors of DNA at mercury film electrode, Bioelectrochem Bioenerg (44). 151-154 (1997). https://doi.org/10.1016/S0302-4598(97)00049-4
  18. N.B.F. Zakharchukp and K.Z. Brainina, The Surface Morphology of Mercury Plated Glassy-Carbon Electrodes and Stripping Voltammetry of Heavy Metals, Electroanal. 10(6), 379-386(1998). https://doi.org/10.1002/(SICI)1521-4109(199805)10:6<379::AID-ELAN379>3.0.CO;2-S
  19. P. Kostecka, L. Havran, H. Pivonkova and M. Fojta, Voltammetry of osmiummodified DNA at a mercury film electrodeApplication in detecting DNA hybridization, Bioelectrochemistry 63, 245-248(2004). https://doi.org/10.1016/j.bioelechem.2003.11.005