DOI QR코드

DOI QR Code

수성페인트-실란접착제 혼합물의 접착특성

Adhesive characteristics of water-paint and silane adhesive mixture

  • 한현각 (순천향대학교 나노화학공학과)
  • HAN, Hyun Kak (Department of Chemical Engineering., Soonchunhyang University)
  • 투고 : 2015.07.20
  • 심사 : 2015.08.06
  • 발행 : 2015.08.31

초록

페인트는 외부로부터 본체가 손상되는 것을 막아주며, 오랫동안 색깔과 마무리 상태를 유지해 준다. 유기용제와 물이 페인트의 용제로 사용되고 있으며, 유기용제는 VOCs의 인위적인 공급원으로 알려져 있다. 이러한 이유로 자동차 내장부품에서 유기용재 페인트의 사용은 줄어들고 있으며, 외장 부품에서는 계속 사용하고 있다. 수성페인트의 접착력은 유성페인트에 비하여 작아, 페인트가 기제로부터 박리되고 있어, 품질문제를 일으킨다. 본 연구에서는 수성페인트와 실린 혼합물의 접착 특성에 대하여 연구하였다. 수성페인트의 접착력을 향상시키기 위하여 접착제와 혼합이 필요하다. 접착력은 UTM을 이용하여 ASTM D1002 방법으로 측정하였고, 박리현상은 ASTM D1002를 사용하여 측정하였다. 수성페인트와 실란접착제의 최적 혼합조건은 $25^{\circ}C$, 500rpm, 20분 이었으며. 실란접착제 농도는 5wt% 이었다

Paint must be resistant to the wear and tear of the atmosphere and should maintain its color and finish for a long time. The solvents of paints were organic solvent and water, common artificial source of VOCs(Volatile organic Solvent) include organic solvent. Using of organic solvent paint was decreased in the interior parts of automotive, exterior parts were still used organic solvent paint. Adhesive strength of water-paint was poor to compare with organic solvent paint and peeled off from the base materials, it was big quality problem. In this study, adhesive characteristics of water-paint and silane mixture was investigated. To improve adhesive strength of water-paint, it was necessary to mixing of adhesive material. Adhesive strength was measured using UTM(Universal Test Instrument) by ASTM D1002 and Peeling off condition was by ASTM D3359. Optimal mixing condition of water-paint and silane adhesive were $25^{\circ}C$, 500rpm, 20min., concentration of silane adhesive was 5 wt%.

키워드

참고문헌

  1. Sim, D. H. and Seul, S. D., Manufacture and Properties of Water Soluble Acrylic Type PSA's - Effect of Functional Monomer Change and Atmospheric Plasma Treatment, Polym.(Korea) 33, 1, 45-51, 2009.
  2. K. J. O and Kim, J. S., Influence of Processing Conditions on the Physical Properties of Crumb Rubber Modified Asphalts, J. Korean Soc. Road Eng., 10, 239, 2008.
  3. Matejka, L., Dukh, O. and Kolarik, J., Reinforcement of Crosslinked Rubbery Epoxies by in-situ Formed Silica, Polymer, 41, 1449, 2000. DOI: http://dx.doi.org/10.1016/S0032-3861(99)00317-1
  4. Grace, J. M. and Gerenser, L. J., "Plasma Treatment of Polymers," J. Dispersion Sci. Tech., 24, 3, 305, 2003. https://doi.org/10.1081/DIS-120021793
  5. Seul, S. D., Lee, S. R. and Lee, N. W., A Development of Nontoxic Composite Latex Using CaCO3/PEMA, J. of the Korean Institute for Industrial Safety, 17(4), 133-139, 2002.
  6. Yim, M. J. and Paik, K. W., Recent Advances in Anisotropic Conductive Adhesives for Microelectronics Packaging Applications, Ceramist, 8, 23-39, 2005.
  7. Petrovigc, Z. S., Jaint, I., Waddon, A. and Banhegyi, G., Structure and Properties of Polyurethane-silica Nanocomposites, J. Appl. Polym. Sci., 76, 133, 2000. DOI:http://dx.doi.org/10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.3.CO;2-B
  8. Yamaguchi, D., Cloitre, M., Panine, P. and Leibler, L., Phase Behavior and viscoelastic Properties of Thermoplastic ElastomerGels Based on ABC Triblock copolymers, Macromolecules, 38, 7798, 2005. DOI: http://dx.doi.org/10.1021/ma0503209
  9. Blanco, R., Rodriguez, R., Garcia-Garduno, M. and Castano, V. M., Rheological properties of Styrene-butadiene Copolymer Reinforced Asphalt, J. Appl. Polym. Sci., 61, 1493, 1996. DOI:ht tp://dx.doi.org/10.1002/(SICI)1097-4628(19960829)61:9<1493::AID-APP9>3.0.CO;2-E
  10. Morrison, G. R. and Hesp, S. A. M., A New Look at Rubber Modified Asphalt Binders, J. Mater. Sci., 30, 2584, 1995. DOI: http://dx.doi.org/10.1007/BF00362138
  11. young ho kim, Contact angle & Surface Energy, Prospectives of Industrial Chemistry, 8, 3, 82-93, 2005.
  12. Eun Young Park andsang goo lee and jong-wook ha and in jun park and soo-bok lee and yongtaek lee, Synthesis and Surface Characteristics of Novel Oligomeric Silane with Perfluoropolyether, polymer(korea), 397-402, 2008