DOI QR코드

DOI QR Code

세라믹막을 이용한 미생물연료전지의 전기화학적 특성 연구

Electrochemical Characteristics of the MFCs using the Ceramic Membrane as a Separator

  • 임지영 (인천대학교 건설환경공학과) ;
  • 박대석 (인천대학교 건설환경공학과) ;
  • 김진한 (인천대학교 도시환경공학부)
  • Lim, Ji-Young (Dept. of Civil & Environmental Engineering, Incheon National University) ;
  • Park, Dae-Seok (Dept. of Civil & Environmental Engineering, Incheon National University) ;
  • Kim, Jin-Han (School of Urban and Environmental Engineering, Incheon National University)
  • 투고 : 2015.05.15
  • 심사 : 2015.08.06
  • 발행 : 2015.08.31

초록

단일챔버 미생물연료전지에 분리막으로 세라믹막과 나피온막을 적용하여 전기발생특성을 분석함으로써 세라믹막의 적용가능성을 구명하고자 하였다. 또한 환원전극으로서 백금촉매가 도포된 탄소천과 일반 탄소천을 사용하여 백금촉매 효과 및 전기발생특성을 비교하였다. 회분식 실험에서 전기발생특성이 가장 안정적인 것은 acetate를 기질로 사용하였을 때였다. Formate는 전기발생특성이 acetate보다 다소 높았으나 불안정하였고 propionate와 butyrate는 acetate에 비하여 전기발생량이 상대적으로 낮았다. 환원전극으로서 백금촉매가 도포되어 있는 탄소천과 일반 탄소천을 비교한 결과 백금촉매가 도포된 탄소천의 전력발생량이 일반 탄소천에 비하여 1.2배 높게 나타났지만 약 5배 정도 비용 차이가 있음을 고려하면 미생물연료전지의 적용에 있어 효율성과 경제성은 함께 고려되어야 할 것으로 판단된다. 분리막으로서 세라믹막과 나피온막을 적용한 미생물 연료전지에서 발생한 평균 전압은 합성폐수를 이용한 실험에서 각각 $523.67mV{\pm}49.41mV$, $424.09mV{\pm}79.95mV$이었다. 미생물연료전지에 분리막으로 세라믹막과 나피온막을 적용하여 전력발생 및 유기물제거효율을 비교한 결과, 세라믹막이 나피온막의 대안이 될 수 있음을 확인하였다.

This study attempts to verify the applicability of ceramic membrane as a separator by comparing the power generation characteristics in single-chamber MFCs using ceramic membranes to those in the MFCs using nafion membrane. The generated power in MFCs by using acetate as a substrate was more stable than that by using formate, propionate and butyrate, respectively. It was shown that the generated power by using formate substrate in MFCs was unstable and a little higher than that by using acetate, and the power generated by using propionate and butyrate were lower than that by using acetate. In order to find out the Pt catalyst effect, it was compared the power generated in MFCs using Pt-coated carbon cloth as electrode to that power using normal carbon cloth. The power generated in MFCs using Pt-coated carbon cloth as electrode was 1.2 times higher than that using normal carbon cloth. The Pt-coated carbon cloth was about 5 times more expensive than normal carbon cloth. It is suggested that both power generation efficiency and cost together should be considered in selecting electrodes of MFCs. It was found that the ceramic membrane was superior to nafion membrane by comparing to the power generation characteristics obtained. It was shown that average voltage values were $523.67mV{\pm}49.41mV$ by using synthetic wastewater, in MFCs of ceramic membrane as a separator. While average voltage values were $424.09mV{\pm}79.95mV$ by using synthetic wastewater, in MFCs of nafion membrane as a separator. The organic removal efficiency, 41.7% by using ceramic membrane was a little bit higher than 40.8% by using nafion membrane. This research implies ceramic membrane can be a valid alternative to nafion membrane as a separator when considering the power generation and the efficiency of organics removal.

키워드

참고문헌

  1. L. Hong, R. Ramnarayanan, B. E. Logan, "Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell", Environ. Sci. Technol., 38(7), pp. 2281-2285, 2004. DOI: http://dx.doi.org/10.1021/es034923g
  2. S. I. Kim, S. M. Han, J. H. Kim, "KISTEP selected 10 kinds of promising technology in 2012", Issue paper 2012-01, KISTEP, 2012.
  3. D. Pant, G. V. Bogaert, L. Diels, K. Vanbroekhoven, "A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production", Bioresource Technology, 101(6), pp. 1533-1543, 2010. DOI: http://dx.doi.org/10.1016/j.biortech.2009.10.017
  4. J. R. Kim, S. Cheng, S. E. Oh, B. E. Logan, "Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cell", Environ. Sci. Technol., 41(3), pp. 1004-1009. 2007. DOI: http://dx.doi.org/10.1021/es062202m
  5. N. G. Anil, S. Mypati, D. Narcis, M. G. Makarand, "Influence of ceramic separator's characteristics on microbial fuel cell performance", J. Electrochem. Sci. Eng., 4(4), pp. 315-326. 2014.
  6. W. Liling, H. Hongliang, S. Jianquan, "Effects of temperature and ferrous sulfate concentrations on the performance of microbial fuel cell", International Journal of Hydrogen Energy, 38(25), pp. 11110-11116, 2013. DOI: http://dx.doi.org/10.1016/j.ijhydene.2013.01.019
  7. B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, "Microbial Fuel Cells: Methodology and Technology", Environ. Sci. Technol., 40(17), pp. 5181-5192, 2006. DOI: http://dx.doi.org/10.1021/es0605016
  8. B. E. Logan, Microbial Fuel Cells, McGraw-Hill, NewYork. 2008.
  9. A. N. Ghadge, M. Sreemannarayana, N. Duteanu, M. M. Ghangrekar, "Influence of ceramic separator's characteristics on microbial fuel cell performance", J. Electrochem. Sci. Eng., 4(4), pp. 315-326. 2014. DOI: http://dx.doi.org/10.5599/jese.2014.0047