• Title/Summary/Keyword: Silane adhesive

Search Result 52, Processing Time 0.021 seconds

The effect of silane and universal adhesives on the micro-shear bond strength of current resin-matrix ceramics

  • Sarahneh, Omar;Gunal-Abduljalil, Burcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.292-303
    • /
    • 2021
  • PURPOSE. The aim of this in vitro study was to evaluate the effect of silane and universal adhesive applications on the micro-shear bond strength (µSBS) of different resin-matrix ceramics (RMCs). MATERIALS AND METHODS. A total of 120 slides (14 × 12 × 1 mm) were produced from 5 different RMC materials (GC Cerasmart [GC]; Brilliant Crios [BC]; Grandio blocs [GB]; Katana Avencia [KA]; and KZR-CAD HR 2 [KZR]) and sandblasted using 50 ㎛ Al2O3 particles. Each RMC material was divided into six groups according to the surface conditioning (SC) method as follows: control (G1), silane primer (G2), silane-free universal adhesive (G3), silane-containing universal adhesive (G4), silane primer and silane-free universal adhesive (G5), and silane primer and silane-containing universal adhesive (G6). Three cylindric specimens made from resin cement (Bifix QM) were polymerized over the treated surface of each slide (n = 12). After thermal cycling (10000 cycles, 5 - 55℃), µSBS test was performed and failure types were evaluated using a stereomicroscope. Data were analyzed using 2-way ANOVA and Tukey tests (α = .05). RESULTS. µSBS values of specimens were significantly affected by the RMC type and SC protocols (P < .001) except the interaction (P = .119). Except for G2, all SC protocols showed a significant increase in µSBS values (P < .05). For all RMCs, the highest µSBS values were obtained in G4 and G6 groups. CONCLUSION. Only silane application did not affect the µSBS values regardless of the RMC type. Moreover, the application of a separate silane in addition to the universal adhesives did not improve the µSBS values. Silane-containing universal adhesive was found to be the best conditioning method for RMCs.

Adhesive characteristics of water-paint and silane adhesive mixture (수성페인트-실란접착제 혼합물의 접착특성)

  • HAN, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5721-5727
    • /
    • 2015
  • Paint must be resistant to the wear and tear of the atmosphere and should maintain its color and finish for a long time. The solvents of paints were organic solvent and water, common artificial source of VOCs(Volatile organic Solvent) include organic solvent. Using of organic solvent paint was decreased in the interior parts of automotive, exterior parts were still used organic solvent paint. Adhesive strength of water-paint was poor to compare with organic solvent paint and peeled off from the base materials, it was big quality problem. In this study, adhesive characteristics of water-paint and silane mixture was investigated. To improve adhesive strength of water-paint, it was necessary to mixing of adhesive material. Adhesive strength was measured using UTM(Universal Test Instrument) by ASTM D1002 and Peeling off condition was by ASTM D3359. Optimal mixing condition of water-paint and silane adhesive were $25^{\circ}C$, 500rpm, 20min., concentration of silane adhesive was 5 wt%.

Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

  • dos Santos, Victor Hugo;Griza, Sandro;de Moraes, Rafael Ratto;Faria-e-Silva, Andre Luis
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.1
    • /
    • pp.12-16
    • /
    • 2014
  • Objectives: Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Material and Methods: Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice ($1mm^2$ diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results: Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions: Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.

Bonding of the silane containing multi-mode universal adhesive for lithium disilicate ceramics

  • Lee, Hyun-Young;Han, Geum-Jun;Chang, Juhea;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.2
    • /
    • pp.95-104
    • /
    • 2017
  • Objectives: This study evaluated the influence of a multi-mode universal adhesive (MUA) containing silane (Single Bond Universal, 3M EPSE) on the bonding of resin cement to lithium disilicate. Materials and Methods: Thirty IPS e.max CAD specimens (Ivoclar Vivadent) were fabricated. The surfaces were treated as follows: Group A, adhesive that did not contain silane (ANS, Porcelain Bonding Resin, Bisco); Group B, silane (S) and ANS; Group C, hydrofluoric acid (HF), S, and ANS; Group D, MUA; Group E, HF and MUA. Dual-cure resin cement (NX3, Kerr) was applied and composite resin cylinders of 0.8 mm in diameter were placed on it before light polymerization. Bonded specimens were stored in water for 24 hours or underwent a 10,000 thermocycling process prior to microshear bond strength testing. The data were analyzed using multivariate analysis of variance (p < 0.05). Results: Bond strength varied significantly among the groups (p < 0.05), except for Groups A and D. Group C showed the highest initial bond strength ($27.1{\pm}6.9MPa$), followed by Group E, Group B, Group D, and Group A. Thermocycling significantly reduced bond strength in Groups B, C, and E (p < 0.05). Bond strength in Group C was the highest regardless of the storage conditions (p < 0.05). Conclusions: Surface treatment of lithium disilicate using HF and silane increased the bond strength of resin cement. However, after thermocycling, the silane in MUA did not help achieve durable bond strength between lithium disilicate and resin cement, even when HF was applied.

Synthesis of Silane Group Modified Polyurethane Acrylate and Analysis of Its UV-curing Property (실란기가 도입된 폴리우레탄 아크릴레이트 합성 및 자외선 경화 특성 분석)

  • Kim, Jung Soo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • In this study, we prepared a silver nanoparticle transferable adhesive composition with transparency and adhesive properties using UV-curable urethane acrylate containing silane groups. The urethane-based adhesive composition was applied between the Ag/PET film in which silver nanoparticles were patterned on PET and the PC film to be transferred. Immediately after UV-curing with UV, PET was removed to complete the manufacture of Ag/PC film. UV-curable urethane acrylate containing silane groups was synthesized using polycaprolactone diol (PCL), isophrone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA), and (3-aminopropyl) triethoxysilane (APTES). The silane group of APTES can improve interfacial adhesion by reacting with the specially treated silver nanoparticle surface of the Ag/PET film. In addition, we improved the adhesion between silver nanoparticle and PC film by mixing UV-curable urethane acrylate containing a silane group and a functional acrylic diluent used as a diluent. We analyzed the synthesis process of urethane acrylate using FT-IR, and compared the adhesive properties, optical properties, and transfer properties according to the molar ratio of APTES and the acrylic diluent composition. As a result, the best transfer properties were confirmed in the adhesive composition prepared under the conditions of PUA2S1_0.5.

Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate (이성분계 실란 커플링제의 가수분해속도 조절에 의한 2-FCCL의 접착특성 변화 연구)

  • Park, U-Joo;Park, Jin-Young;Kim, Jin-Young;Kim, Yong-Seok;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.302-307
    • /
    • 2011
  • The parameters of silanol formation reaction of organosilane including solvent type, solution concentration, pH and hydrolysis time influence the adhesion property of 2 layer flexible copper clad laminate (FCCL). Especially, the hydrolysis reaction time of silane coupling agent affects the formation of the silanol groups and their self-condensation to generate oilgomeric structure to enhance the surface treatment as an adhesive promoter. In our study, we prepared the binary silane coupling agents to control hydrolysis reaction rate and surface energy after treatment of silane coupling agents for increasing the adhesive property between a copper layer and a polyimide layer. The surface morphology of rolled copper foil, as a function of the contents of the coated binary silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by hydrolysis rate and surface energy.

Effect of different adhesive systems and post surface treatments on the push-out bond strengths of fiber-reinforced post (다양한 접착 시스템 및 포스트의 표면 처리가 섬유 강화 포스트의 접착 강도에 미치는 영향)

  • Kim, Min-Woo;Ahn, Jin-Hee;Kim, Lee-Kyoung;Shim, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.218-225
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate the push-out bond strength of glass-fiber post cemented with different adhesive systems and surface treatments. Materials and methods: 160 tooth samples made from 48 human maxillary single-rooted teeth with similar root length were divided into 4 groups according to the adhesive system (no adhesive, Adper Single Bond 2, Clearfil SE Bond, Clearfil S3). Each group had 4 subgroups according to the post surface treatment methods (no treatment, sandblast, silane, sandblast and silane). Posts (Parapost Fiber White) were cemented with Rely X Unicem. The teeth were sectioned perpendicular to their long axis into 1-mm thick sections. The push-out tests was performed at a speed of 0.5 mm/min. The results were evaluated by 2-way ANOVA, 1-way ANOVA and multiple comparison procedures (Tukey test) (${\alpha}=0.05$). Results: Tukey test showed that the adhesive system significantly influenced the push-out strength. The Clearfil SE Bond group showed the highest value. Post surface treatments showed no significant effect. Conclusion: Bond strength of glass-fiber post cemented with self-adhesive resin cement using Clearfil SE Bond showed significantly higher values compared to other adhesive systems.

The Effect of Functionalized Organosilane Coupling Agent on the Adhesion Properties of 2 Layer Flexible Copper Clad Laminate (기능성 실란커플링제가 2-FCCL의 접착특성에 미치는 영향)

  • Park, Jin-Young;Lim, Jae-Phil;Kim, Yong-Seok;Jung, Hyun-Min;Lee, Jae-Heung;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.525-529
    • /
    • 2009
  • In order to manufacture 2-layer flexible copper clad laminate (FCCL) s having the excellent performance high adhesion properties between copper foil and polyimide film are required. Silane coupling agents with specific functional groups as an adhesion promoter are generally used to enhance the adhesion. In our study, we synthesized a novel silane coupling agent for increasing the adhesive property between copper layer and polyimide layer. The surface morphology of rolled copper foil, as a function of the concentrations of the coated silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by the surface morphology and we confirmed that the novel silane coupling agent affects adhesive properties in FCCL with two types of poly (amic acid)s.

Effect of 3-Isocaynatopropyl Triethoxy Silane on PU Adhesive (3-Isocaynatopropyl Triethoxy Silane이 PU 접착제에 미치는 영향)

  • Ju, Honghee;Jang, Euisub;Park, Chan Young;Lee, Won-Ki;Kim, Taekyun;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • To improve hydrolytic stability of polyurethane (PU) adhesives, a silane coupling agent (SCA) was added. 3-Isocyanatopropyl triethoxy silane (ITS) as a SCA has two functional groups in the main chain and it is used to improve an interfacial interaction between polymer and inorganic material or metal. In this study, PU adhesives with different amounts of ITS from 0 to 1 wt% were synthesized. Pot time, modulus, thermal stablilty, and adhesive force of the obtained samples were measured. The results showed that the adhesives with ITS showed better properties than that of pure one.

Interfacial Fracture Behavior of Epoxy Adhesives for Electronic Components (전자부품용 에폭시 접착제의 계면 파괴 거동 연구)

  • Kang, Byoung-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1479-1487
    • /
    • 2011
  • In the field of the entire electronic component industry including mobile IT products, the importance of a versatile package with the multifunctional or high capacity memories is gradually increased. Multi Chip Package which has several chips in a single package is frequently used for that purpose. In MCP, epoxy adhesive films play a major role in adhesion between the chips or between chip and substrate. A series of silane coupling agents with a functional group such as epoxy, amine, mercaptan, and isocyanate were applied to the epoxy adhesives and material properties such as wettability and reliability of the adhesives were investigated. From the results, the silane coupling agent with an epoxy functional group showed highest wettability and peel strength in epoxy adhesive. For those reasons, it lead to a superior reliability in the epoxy adhesive against interfacial fracture behaviors through moisture resistance test.