DOI QR코드

DOI QR Code

Fire Resistance Performance Test of High Strength Concrete by Type of Mineral Admixture

혼화재 종류에 따른 고강도 콘크리트의 내화성능 평가

  • Kwon, Ki-Seok (Architectural Engineering, Hanyang University) ;
  • Ryu, Dong-Woo (Department of Architectural Engineering, Daejin University)
  • Received : 2015.08.03
  • Accepted : 2015.11.12
  • Published : 2015.12.20

Abstract

The method of concrete mix design used in this study aims to achieve the identical specified design strength, applying different types and replacement ratio of mineral admixtures and afterwards, fire tests were conducted using the standard time-temperature curve specified in the ASTM E119 to identify the influences of the types of mineral admixtures on the fire resistance performance of high strength concrete(HSC). The least spalling was observed in the test specimen containing blast furnace slag as a partial replacement of cement, while the most significant spalling phenomena were observed in the blast furnace slag test specimen that silica-fume was added in. In particular, the reasonable volume of spalling was observed when solely replaced by silica fume. However, the influence of the cement replacement by silica fume and blast furnace slag on the increases of spalling can be explained through blocked pores by the fine particles of silica fume, leading to decreases in permeability.

본 연구에서는 동일 설계기준 강도를 목표로 혼화재의 종류 및 치환율을 달리하여 콘크리트 배합설계를 실시하였으며, 이에 따른 혼화재의 종류가 고강도 콘크리트의 내화성능에 미치는 영향을 검토하고자 ASTM E119의 표준가열온도 곡선에 따른 내화시험을 실시하였다. 그 결과, 고로슬래그를 치환하는 경우 폭렬량이 현저히 저감되는 것으로 나타났으며, 실리카흄을 추가하여 치환하는 경우 폭렬량이 가장 많은 것으로 나타났다. 특히 실리카흄을 단독으로 치환하는 경우 비교적 양호한 폭렬량을 나타냈으나, 고로슬래그와 함께 치환한 시험체의 경우 분말도가 높은 실리카흄이 공극을 밀실하게 함으로써 수증기압의 증가로 인해 폭렬량이 증가한 것으로 판단된다. 또한, 실리카흄을 5% 치환한 시험체의 경우, 고로슬래그 치환율이 증가함에 따라 상대적으로 큰 공극량은 감소하고 미세공극량이 증가함으로써 폭렬량 또한 증가하는 결과를 나타냈다.

Keywords

References

  1. Song H, Ko JW, Shinichi S. Thermal properties and explosive spalling for high strength concrete. Magazine of the Korea Concrete Institute. 2008 Sep;20(5):26-32 https://doi.org/10.22636/MKCI.2008.20.5.26
  2. Han CG, Pei CC, Lee JS, Lee CY. Fire resistant properties of the RC columns applying various spalling prevention methods. Journal of The Korea Institute for Structural Maintenance and Inspection. 2009 May;13(3):119-26
  3. Youm KS, Jeon HK, Kim HY. Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading. Magazine of the Korea Concrete Institute. 2009 Jul;21(4):465-71 https://doi.org/10.4334/JKCI.2009.21.4.465
  4. Park KH, Kim HY, Kim HJ, Kwon KH. Experimental Study for Fire Resistance and Heat Transfer Properties on the Compressive Strength of High-Strength Concrete Column. Journal of Korea Society of Hazard Mitigation. 2012 Dec;12(6);53-9 https://doi.org/10.9798/KOSHAM.2012.12.6.053
  5. ASTM international. Standard Test Methods for Fire Tests of Building Construction and Materials. ASTM E119-14. 2014.
  6. National Fire Protection Association. Standard Methods of Tests of Fire Resistance of Building Construction and Materials. from ASTM E119-14. 2006:4-299
  7. Chan YN, Luo X, Sun W. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to $800^{\circ}C$. Cement and Concrete Research. 2000 Feb;30(2):247-51 https://doi.org/10.1016/S0008-8846(99)00240-9
  8. Kalifa P, Menneteau FD, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cement and concrete research. 2000 Dec;30(12):1915-27 https://doi.org/10.1016/S0008-8846(00)00384-7
  9. Poon CS, Azhar S, Anson M, Wong YL. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cement and Concrete Reasearch. 2001 Sep;31(9):1291-300 https://doi.org/10.1016/S0008-8846(01)00580-4
  10. Han CG, Hwang YS, Yang SH, Gowripalan N. Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement. Cement and Concrete Research. 2005 Sep;35(9):1747-53 https://doi.org/10.1016/j.cemconres.2004.11.013
  11. Ghan YN, Peng GF, Anson M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement and Concrete Composites. 1999;21(1):23-7 https://doi.org/10.1016/S0958-9465(98)00034-1