DOI QR코드

DOI QR Code

Evaluation of the Measurement Uncertainty from the Standard Operating Procedures(SOP) of the National Environmental Specimen Bank

국가환경시료은행 생태계 대표시료의 채취 및 분석 표준운영절차에 대한 단계별 측정불확도 평가 연구

  • Lee, Jongchun (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Lee, Jangho (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Park, Jong-Hyouk (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Lee, Eugene (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Shim, Kyuyoung (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Kim, Taekyu (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Han, Areum (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Kim, Myungjin (Natural Environment Research Division, National Institute of Environmental Research)
  • 이종천 (국립환경과학원 자연환경연구과) ;
  • 이장호 (국립환경과학원 자연환경연구과) ;
  • 박종혁 (국립환경과학원 자연환경연구과) ;
  • 이유진 (국립환경과학원 자연환경연구과) ;
  • 심규영 (국립환경과학원 자연환경연구과) ;
  • 김태규 (국립환경과학원 자연환경연구과) ;
  • 한아름 (국립환경과학원 자연환경연구과) ;
  • 김명진 (국립환경과학원 자연환경연구과)
  • Received : 2015.11.09
  • Accepted : 2015.12.21
  • Published : 2015.12.31

Abstract

Five years have passed since the first set of environmental samples was taken in 2011 to represent various ecosystems which would help future generations lead back to the past environment. Those samples have been preserved cryogenically in the National Environmental Specimen Bank(NESB) at the National Institute of Environmental Research. Even though there is a strict regulation (SOP, standard operating procedure) that rules over the whole sampling procedure to ensure each sample to represent the sampling area, it has not been put to the test for the validation. The question needs to be answered to clear any doubts on the representativeness and the quality of the samples. In order to address the question and ensure the sampling practice set in the SOP, many steps to the measurement of the sample, that is, from sampling in the field and the chemical analysis in the lab are broken down to evaluate the uncertainty at each level. Of the 8 species currently taken for the cryogenic preservation in the NESB, pine tree samples from two different sites were selected for this study. Duplicate samples were taken from each site according to the sampling protocol followed by the duplicate analyses which were carried out for each discrete sample. The uncertainties were evaluated by Robust ANOVA; two levels of uncertainty, one is the uncertainty from the sampling practice, and the other from the analytical process, were then compiled to give the measurement uncertainty on a measured concentration of the measurand. As a result, it was confirmed that it is the sampling practice not the analytical process that accounts for the most of the measurement uncertainty. Based on the top-down approach for the measurement uncertainty, the efficient way to ensure the representativeness of the sample was to increase the quantity of each discrete sample for the making of a composite sample, than to increase the number of the discrete samples across the site. Furthermore, the cost-effective approach to enhance the confidence level on the measurement can be expected from the efforts to lower the sampling uncertainty, not the analytical uncertainty. To test the representativeness of a composite sample of a sampling area, the variance within the site should be less than the difference from duplicate sampling. For that, a criterion, ${i.e.s^2}_{geochem}$(across the site variance) <${s^2}_{samp}$(variance at the sampling location) was proposed. In light of the criterion, the two representative samples for the two study areas passed the requirement. In contrast, whenever the variance of among the sampling locations (i.e. across the site) is larger than the sampling variance, more sampling increments need to be added within the sampling area until the requirement for the representativeness is achieved.

국가환경시료은행에서는 과거 환경 재현을 목적으로 다양한 생태계를 대표하는 시료를 채취 저장하고 있다. 지난 5년간 8종의 생태계 시료종이 엄격한 표준운영절차(SOP)에 따라 채취되어 왔으나 수행절차에 대한 비용효율성이나 시료의 대표성에 대한 논리적 통계적 검증은 이루어 진 바 없었다. 따라서 본 연구에서는 시료채취 및 분석과정으로 구성된 표준운영절차의 각 단계에서 비롯되는 불확도(uncertainty) 수준에 대한 평가를 실시하였다. 이를 위해 표준운영절차에서 규정된 채취방법에 의해 채취된 두 지역의 침엽수 시료를 대상으로 중복시료(duplicate sample)를 채취하였고, 이에 대한 중복분석결과를 대칭설계(balanced design)하여 분산분석을 실시하였다. 시료채취 및 분석의 각 단계에서 산출된 불확도 수준은 각 해당지역 대표시료에 대한 측정불확도로 통합되었다. 그 결과 시료채취단계와 분석단계 중 측정불확도의 대부분은 시료채취단계에서 비롯되고 있음이 확인되었다. 또한 측정불확도 수준을 저감하기 위해서는 표준운영절차에서 규정하고 있는 시료채취방법이 개선되어야 하는데, 본 연구에서 확인된 채취지역의 상대적으로 큰 국지적 이질성(small-scale heterogeneity)으로 말미암아 지역내에서의 채취대상 개체수를 확대하는 것보다 각 개체에서 채취되는 시료량을 늘리는 것이 비용효율적인 개선에 대한 기준이 되었다. 또한 채취방법이 채취지역에서 분포하는 개체들의 이질성을 충분히 극복하며 대표성을 확보할 수 있는가에 대한 검증으로서 분산분석을 적용한 결과, 지역전체의 변화량보다 국지적 변화량이 더 커야 하는 조건을 제시할 수 있었다.

Keywords

References

  1. 국립환경과학원. 2013. 대기환경연보, 163-178.
  2. 김명진, 유병호, 이민효, 김태규, 이정연, 최태영, 이중효, 이선미, 이석조, 이종천, 이철우. 2007. 국가환경시료은행 표준운영체계 구축 연구(I), 국립환경과학원 보고서.
  3. 박기학. 1992. 교통량 과밀 도로주변의 토양과 가로수, 대기중 Pb, Cu, Zn 중금속 농도와 그 상관성에 관한 연구, 한국환경위생학회지, 18(2), 19-25.
  4. 이상희, 한아름, 이종천, 이장호, 이유진, 김기동. 2013. 침엽수 시료의 중금속 함량에 영향을 미치는 지화학적 특성 및 입자상 성분 연구, 국립환경과학원 보고서.
  5. 이장호, 이종천, 바데 라빈드라, 한아름, 이유진, 김민성, 김명진, 오길종. 2012. 국가환경시료은행 시료채취 및 처리 표준운영절차 활용연구(III), 국립환경과학원 보고서.
  6. 추미경, 김규한, 이진수, 전효택. 2005. 서울지역 가로수 토양과 은행나무 잎 중의 중금속 원소들의 지구화학적 분산과 오염특성, 자원환경지질학회지, 38(3), 221-236.
  7. AMC. 1989. Robust statistics-how not to reject outliers-Part 1. Basic concepts. Analyst, 114, 1693-1697. https://doi.org/10.1039/an9891401693
  8. Appenroth KJ. 2010. Definition of "Heavy Metals" and their role in biological systems. In: I. Sherameti and A. Varma (eds.). Soil Heavy Metals, Soil Biology. 19, 19-29. https://doi.org/10.1007/978-3-642-02436-8_2
  9. ISO. 1993. Guide to the expression of uncertainty in measurement. 1st ed. International Organisation for Standardisation. Geneva, Switzerland.
  10. Lyn JA, Ramsey MH, Coad DS, Damant AP, Wood R, Boon KA. 2007. The duplicate method of uncertainty estimation: are eight targets enough?, The Analyst 132(11), 1147-1152. https://doi.org/10.1039/b702691a
  11. Ramsey MH, Watkins PJ, Sams MS. 1998. Estimation of measurement uncertainty for in situ borehole determinations using a geochemical logging tool. Geological Society. Special Publication, 136, 53-63. https://doi.org/10.1144/GSL.SP.1998.136.01.06
  12. Thompson M. 1995. Uncertainty in an uncertain world. Analyst, 120, 117N-118N. https://doi.org/10.1039/an995200117n
  13. Wagner G. 1993. Plants and soils as specimen types from terrestrial ecosystems in the environmental specimen banking program of the Federal Republic of Germany. Science of the Total Environment, 139-140, 213-224. https://doi.org/10.1016/0048-9697(93)90021-W

Cited by

  1. Applicability test of broad leaf samples stored at the NESB for biomonitoring of airborne pollutants vol.25, pp.6, 2016, https://doi.org/10.14249/eia.2016.25.6.532