DOI QR코드

DOI QR Code

금속이 도핑된 BiVO4 분말의 수열 합성 및 이의 열 변색 특성

Hydrothermal Synthesis of Metal-doped BiVO4 Powder and its Thermochromic Properties

  • 투고 : 2015.09.03
  • 심사 : 2015.10.22
  • 발행 : 2015.12.10

초록

본 연구에서는 열 변색 물질로 알려진 순수한 $BiVO_4$ 분말과 금속이 도핑된 $M-BiVO_4$ (M = Mg, Cu) 분말들을 bismuth nitrate ($Bi(NO_3)_3$)와 ammonium vanadate ($NH_4VO_3$)의 혼합 수용액으로부터 고압반응기에서 수열 합성법을 통하여 성공적으로 제조하였다. 시료들의 결정구조, 미세구조 및 열 변색 특성들은 FE-SEM, FT-IR, XRD, DSC, UV-Vis-NIR 분광기 및 colorimeter를 이용하여 분석하였다. 시료를 상전이 온도 이상으로 가열시키면, 순수한 $BiVO_4$ 시료에 비하여 $M-BiVO_4$ (M = Mg, Cu) 시료의 색상이 상대적으로 선명하게 열 변색하였다.

In this study, pure $BiVO_4$ powder and metal-doped $M-BiVO_4$ (M = Mg, Cu) powder, well known as thermochromic materials, were prepared from a mixed aqueous solution of bismuth nitrate ($Bi(NO_3)_3$) and ammonium vanadate ($NH_4VO_3$) in autoclave by hydrothermal method. The crystal structure, microstructure, and thermochromic property of samples were analyzed using FE-SEM, FT-IR, XRD, DSC, UV-Vis-NIR spectroscopy and colorimeter. When heating samples above phase transition temperature, the color of $M-BiVO_4$ (M = Mg, Cu) sample was thermally changed more clearly than that of using only pure $BiVO_4$ sample.

키워드

참고문헌

  1. J. H. Day, Themochromism of inorganic compounds, Chem. Rev., 68, 649-657 (1968). https://doi.org/10.1021/cr60256a001
  2. J. H. Day, Kirk-Othmer's Encyclopedia of Chemical Technology, 6th ed., 129-131, John Wiley & Sons, USA (1979).
  3. W. G. Li, C. Z. Zhu, W. F. Wang, and J. P. Wu, Reversible Thermochromism Materials, J. Funct. Mater., 28, 337-341 (1997).
  4. M. Gotic, S. Music, M. Ivanda, M. Soufek, and S. Popovic, Synthesis and characterisation of bismuth(III) vanadate, J. Mol. Struct., 744-747, 535-540 (2005). https://doi.org/10.1016/j.molstruc.2004.10.075
  5. J. B. Liu, H. Wang, S. Wang, and H. Yan, Hydrothermal preparation of $BiVO_4$ powders, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 104, 36-39 (2003). https://doi.org/10.1016/S0921-5107(03)00264-2
  6. L. Zhang, D. R. Chen, and X. L. Jiao, Monoclinic structured $BiVO_4$ nanosheets: hydrothermal preparation, formation mechanism coloristic, and photocatalytic properties, J. Phys. Chem. B, 110, 2668-2673 (2006). https://doi.org/10.1021/jp056367d
  7. L. S. Kumari, P. P. Rao, A. N. P. Radhakrishnan, V. James, S. Sameera, and P. Koshy, Brilliant yellow color and enhanced NIR reflectance of monoclinic $BiVO_4$ through distortion in $VO_4^{3-}$ tetrahedra, Solar Energy Mater. Sol. Cells, 112, 134-143 (2013). https://doi.org/10.1016/j.solmat.2013.01.022
  8. T. Yang, D. G. Xia, G. Chen, and Y. Chen, Influence of the surfactant and temperature on the morphology and physico-chemical properties of hydrothermally synthesized composite oxide $BiVO_4$, Mater. Chem. Phys., 114, 69-72 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.005
  9. S. Tokunaga, H. Kato, and A. Kudo, Selective preparation of monoclinic and tetragonal $BiVO_4$ with scheelite structure and their photocatalytic properties, Chem. Mater., 13, 4624-4628 (2001). https://doi.org/10.1021/cm0103390
  10. A. K. Bhattacharya, K. K. Mallick, and A. Hartridge, Phase transition in $BiVO_4$, Mater. Lett., 30, 7-13 (1997). https://doi.org/10.1016/S0167-577X(96)00162-0
  11. Y. F. Sun, Y. Xie, C. Z. Wu, and R. Long, First experimental identification of $BiVO_4{\cdot}0.4H_2O$ and its evolution mechanism to final monoclinic $BiVO_4$, Cryst. Growth Des., 10(2), 602-607 (2010). https://doi.org/10.1021/cg900988j
  12. A. Galembeck and O. L. Alves, $BiVO_4$ thin film preparation by metalorganic decomposition, Thin Solid Films, 365, 90-93 (2000). https://doi.org/10.1016/S0040-6090(99)01079-2
  13. Y. Liu, J. F. Ma, Z. S. Liu, C. H. Dai, Z. W. Song, Y. Sun, J. R. Fang, and J. G. Zhao, Low-temperature synthesis of $BiVO_4$ crystallites in molten salt medium and their UV-Vis absorption, Ceram. Int., 36, 2073-2077 (2010). https://doi.org/10.1016/j.ceramint.2010.06.003
  14. U. M. G. Perez, S. S. Guzman, A. M. Cruz, and U. O. Mendez, Photocatalytic activity of $BiVO_4$ nanospheres obtained by solution combustion synthesis using sodium carboxymethylcellulose, J. Mol. Catal. A-Chem., 335, 169-175 (2011). https://doi.org/10.1016/j.molcata.2010.11.030
  15. S. M. Kim, J. Y. Lee, Ch. Y. Mun, and H. S. Lee, Synthesis of bismuth vanadate as visible-light photocatalyst by precipitation reaction, J. Korean Ceram. Soc., 48(6), 630-635 (2011). https://doi.org/10.4191/kcers.2011.48.6.630
  16. A. P. Zhang and J. Z. Zhang, Hydrothermal processing for obtaining of $BiVO_4$ nanoparticles, Mater. Lett., 63, 1939-1942 (2009). https://doi.org/10.1016/j.matlet.2009.06.013
  17. Z. F. Zhun, L. Zhang, J. Q. Li, J. Du, Y. B. Zhang, and J. Q. Zhou, Synthesis and photocatalytic behavior of $BiVO_4$ with decahedral structure, Ceram. Int., 7, 7461-7465 (2013).
  18. U. M. G. Perez, A. M. Cruz, S. S. Guzman, and J. Peral, Low-temperature synthesis of $BiVO_4$ powders by pluronic-assisted hydrothermal method: effect of the surfactant and temperature on the morphology and structural control, Ceram. Int., 3, 4631-4638 (2014).
  19. Y. X. Liu, H. X. Dai, J. G. Deng, L. Zhang, and C. T. Au, Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation, Nanoscale, 4, 2317-2325 (2012). https://doi.org/10.1039/c2nr12046a
  20. X. M. Gao, F. Fu, and W. H. Li, Photocatalytic degradation of phenol over Cu loading $BiVO_4$ metal composite oxides under visible light irradiation, Physica B, 412, 26-31 (2013). https://doi.org/10.1016/j.physb.2012.12.023