DOI QR코드

DOI QR Code

Investigation of Oxidation Methods of Organic Radical Polymer for Cathode Material in Lithium Ion Batteries

리튬이차전지 양극재인 유기라디칼 고분자의 산화법에 대한 연구

  • Lee, Ilbok (School of Intergrative Engineering, Chung-Ang University) ;
  • Kim, Younghoon (Green Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Moon, Ji-Yeon (School of Intergrative Engineering, Chung-Ang University) ;
  • Lee, Chul Wee (Green Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Daeun (School of Intergrative Engineering, Chung-Ang University) ;
  • Ha, Kyoung-Su (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Dong Hyun (School of Intergrative Engineering, Chung-Ang University) ;
  • Son, Hyungbin (School of Intergrative Engineering, Chung-Ang University) ;
  • Yoon, Songhun (School of Intergrative Engineering, Chung-Ang University)
  • 이일복 (중앙대학교 융합공학부) ;
  • 김영훈 (한국화학연구원 그린화학연구본부) ;
  • 문지연 (중앙대학교 융합공학부) ;
  • 이철위 (한국화학연구원 그린화학연구본부) ;
  • 김다은 (중앙대학교 융합공학부) ;
  • 하경수 (서강대학교 화학생명공학과) ;
  • 이동현 (중앙대학교 융합공학부) ;
  • 손형빈 (중앙대학교 융합공학부) ;
  • 윤성훈 (중앙대학교 융합공학부)
  • Received : 2014.07.11
  • Accepted : 2014.08.17
  • Published : 2014.11.25

Abstract

An organic radical polymer (ORP) was prepared by radical polymerization and following oxidation into nitroxyl radical. Two different oxidation methods were employed and their radical concentrations were measured using electroparamagnetic resonance spectroscopy (EPR) and UV-visible absorption (UV-vis) spectroscopy. From these measurements, $H_2O_2-Na_2WO_4$ oxidation method exhibited a complete oxidation, which resulted in 97.6% spin concentration. Also, it was revealed that convenient and cheap UV-vis measurement was useful for preliminary radical concentration comparison. After applied as a cathode material in lithium ion batteries, ORP electrode showed a high initial capacity ($110mAh\;g^{-1}$), a good initial efficiency (96%), a very high rate performance (70% charging during 1.2 min) and stable cycle performance.

라디칼 고분자화 반응 후 산화법을 이용하여 나이트록실 라디칼 고분자를 제조하였다. 두 가지 방법으로 산화된 라디칼 고분자의 라디칼 농도를 electroparamagnetic resonance spectroscopy(EPR) 법과 UV-visible absorption (UV-vis) 방법을 통하여 측정하고 이를 통해 과산화수소수-$Na_2WO_4$ 법으로 산화하였을 때 라디칼 농도가 97.6% 정도 높게 얻어짐을 확인하였다. 또한 UV-vis 법은 정량적인 분석이 어려우나 대략적인 라디칼 형성 정도를 평가하는데 유용함을 확인하였다. 제조된 유기라디칼 고분를 리튬이온전지 양극재로 적용한 결과 우수한 용량, 초기효율, 높은 속도 특성을 가짐을 알수 있었다.

Keywords

Acknowledgement

Supported by : Chung-Ang University

References

  1. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nature, 407, 496 (2000). https://doi.org/10.1038/35035045
  2. K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, and E. Hasegawa, Chem. Phys. Lett., 359, 351 (2002). https://doi.org/10.1016/S0009-2614(02)00705-4
  3. K. Nakahara, J. Iriyama, S. Iwasa, M. Suguro, M. Satoh, and E. J. Cairns, J. Power Sources, 165, 870 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.045
  4. H. Nishide, S. Iwasa, Y. J. Pu, T. Suga, K. Nakahara, and M. Satoh, Electrochim. Acta, 50, 827 (2004). https://doi.org/10.1016/j.electacta.2004.02.052
  5. T. Suga, H. Konishi, and H. Nishide, Chem. Commun., 17, 1730 (2007).
  6. J. K. Kim, G. Cheruvally, J. W. Choi, J. H. Ahn, D. S. Choi, and C. E. Song, J. Electrochem. Soc., 154, A839 (2007). https://doi.org/10.1149/1.2752022
  7. L. Bugnon, C. J. H. Morton, P. Novak, J. Vetter, and P. Nesvadba, Chem. Mater., 19, 2910 (2007). https://doi.org/10.1021/cm063052h
  8. R. Nozu, M. Iizuka, M. Nakanishi, and M. Kyotani, J. Power Sources, 186, 570 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.025
  9. I.-J. Kim, S. Yang, M.-J. Jeon, S.-I. Moon, H.-S. Kim, Y.-P. Lee, K.-H. An, and Y.-H. Lee, J. Power Sources, 173, 621 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.042
  10. Y. Kim, C. Jo, J. Lee, C. W. Lee, and S. Yoon, J. Mater. Chem., 22, 1453 (2012). https://doi.org/10.1039/c1jm15053g
  11. S. Yoon, C. Jo, S. Y. Noh, C. W. Lee, J. H. Song, and J. Lee, Phys. Chem. Chem. Phys., 13, 11060 (2011). https://doi.org/10.1039/c1cp20940j
  12. R.-G. Lin, Z. Tao, S.-F. Xue, Q.-J. Zhu, W. G. Jackson, Z.-B. Wei, and L.-S. Long, Polyhedron, 22, 3467 (2003). https://doi.org/10.1016/j.poly.2003.09.005
  13. S. Yoon, S. D. Bhatt, W. Lee, H. Y. Lee, S. Y. Jeong, J.-O. Baeg, and C. W. Lee, Korean J. Chem. Eng., 26, 64 (2009). https://doi.org/10.1007/s11814-009-0011-3
  14. K. Nakahara, S. Iwasa, J. Iriyama, Y. Morioka, M. Suguro, M. Satoh, and E. J. Carins, Electrochim. Acta, 52, 921 (2006). https://doi.org/10.1016/j.electacta.2006.06.028
  15. G.-A. Nazri and G. Pistoia, Lithium Batteries; Science and Technology, Kluwer Academic Publisher, 2004.

Cited by

  1. Nitroxide polymer brushes as efficient and recoverable catalysts for the selective oxidation of primary alcohols to aldehydes vol.134, pp.1, 2017, https://doi.org/10.1002/app.44365