• 제목/요약/키워드: nitroxyl radical concentration

검색결과 2건 처리시간 0.015초

리튬이차전지 양극재인 유기라디칼 고분자의 산화법에 대한 연구 (Investigation of Oxidation Methods of Organic Radical Polymer for Cathode Material in Lithium Ion Batteries)

  • 이일복;김영훈;문지연;이철위;김다은;하경수;이동현;손형빈;윤성훈
    • 폴리머
    • /
    • 제38권6호
    • /
    • pp.827-831
    • /
    • 2014
  • 라디칼 고분자화 반응 후 산화법을 이용하여 나이트록실 라디칼 고분자를 제조하였다. 두 가지 방법으로 산화된 라디칼 고분자의 라디칼 농도를 electroparamagnetic resonance spectroscopy(EPR) 법과 UV-visible absorption (UV-vis) 방법을 통하여 측정하고 이를 통해 과산화수소수-$Na_2WO_4$ 법으로 산화하였을 때 라디칼 농도가 97.6% 정도 높게 얻어짐을 확인하였다. 또한 UV-vis 법은 정량적인 분석이 어려우나 대략적인 라디칼 형성 정도를 평가하는데 유용함을 확인하였다. 제조된 유기라디칼 고분를 리튬이온전지 양극재로 적용한 결과 우수한 용량, 초기효율, 높은 속도 특성을 가짐을 알수 있었다.

In vivo ESR measurement of free radical reaction in living mice

  • Han, Jin-Yi;Hideo Utsumi
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2000년도 춘계학술대회
    • /
    • pp.6-7
    • /
    • 2000
  • Recently, free radicals such as active oxygen species, nitric oxide, etc are believed to be one of the key substances in physiological and pathological, toxicological phenomena, and oxidative damages, and all organism have defencing system against such as free radicals. Formation and extinction of free radicals may be regulated through bio-redox system, in which various enzymes and compounds should be involved in very complicated manner. Thus, direct and non-invasive measurement of in vivo free radical reactions with living animals must be essential to understand the role of free radicals in pathophysiological phenomena. Electron spin resonance spectroscopy (ESR) is very selective and sensitive technique to detect free radicals, but a conventional ESR spectrometer has large detect in application to living animals, since high frequent microwave is absorbed with water, resulting in generation of high fever in living body. In order to estimate in vivo free radical reactions in living whole animals, we develop in vivo ESR-CT technique using nitroxide radicals as spin probes. Nitroxide radicals and their reduced forms, hydroxylamines, are known to interact with various redox systems. We found that! ! the signal decay due to reduction of nitroxyl radicals is influenced by aging, inspired oxygen concentration, ischemia-referfusion injury, radiation, etc. In the present paper, I will introduce in vivo ESR technique and my laboratory recent results concerning non-invasive evaluation of free radical reactions in living mice.

  • PDF