DOI QR코드

DOI QR Code

The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014

  • Choi, Hak Joo (Traditional and Biomedical Research Center, Daejeon University) ;
  • Kim, Eun A (Traditional and Biomedical Research Center, Daejeon University) ;
  • Kim, Dong Hee (Traditional and Biomedical Research Center, Daejeon University) ;
  • Shin, Kwang-Soo (Division of Life Sciences, College of Natural Science, Daejeon University)
  • Received : 2014.07.12
  • Accepted : 2014.09.17
  • Published : 2014.09.30

Abstract

A ${\beta}$-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, $F_2$, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The production of ginsenoside $F_2$ and compound K was time-dependent and thought to proceed by the transformation pathway of: red ginseng extract ${\rightarrow}Rd{\rightarrow}F_2{\rightarrow}$ compound K. The optimum incubation time and concentration of red ginseng extract for the production of compound K was 96 hr and 4.5% (w/v), respectively.

Keywords

References

  1. Wang L, Zhang Y, Chen J, Li S, Wang Y, Hu L, Wang L, Wu Y. Immunosuppressive effects of ginsenoside-Rd on skin allograft rejection in rats. J Surg Res 2011;176:267-74.
  2. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-$Rb_2$. Biol Pharm Bull 1994;17:635-9. https://doi.org/10.1248/bpb.17.635
  3. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tonooka S, Samukawa K, Azuma I. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-$Rb_2$, 20(R)- and 20(S)-ginsenoside-$Rg_3$, of red ginseng. Biol Pharm Bull 1995; 18:1197-202. https://doi.org/10.1248/bpb.18.1197
  4. Wang BX, Cui JC, Liu AJ, Wu SK. Studies on the anti-fatigue effect of the saponins of stems and leaves of Panax ginseng (SSLG). J Tradit Chin Med 1983;3:89-94.
  5. Cho WC, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocininduced diabetic rats. Eur J Pharmacol 2006;550:173-9. https://doi.org/10.1016/j.ejphar.2006.08.056
  6. Odani T, Tanizawa H, Takino Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. III. The absorption, distribution and excretion of ginsenoside $Rb_1$ in the rat. Chem Pharm Bull (Tokyo) 1983;31:1059-66. https://doi.org/10.1248/cpb.31.1059
  7. Park SY, Bae EA, Sung JH, Lee SK, Kim DH. Purification and characterization of ginsenoside $Rb_1$-metabolizing ${\beta}$-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem 2001;65:1163-9. https://doi.org/10.1271/bbb.65.1163
  8. Kim MK, Lee JW, Lee KY, Yang DC. Microbial conversion of major ginsenoside $Rb_1$ to pharmaceutically active minor ginsenoside Rd. J Microbiol 2005;43:456-62.
  9. Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside $Rb_1$ by intestinal bacteria, in rat plasma after oral administration - measurement of compound K by enzyme immunoassay Biol Pharm Bull 1998;21:245-9. https://doi.org/10.1248/bpb.21.245
  10. Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH. Hepatoprotective effect of ginsenoside $Rb_1$ and compound K on tert-butyl hyroperoxide-induced liver injury Liver Int 2005;25:1069-73. https://doi.org/10.1111/j.1478-3231.2005.01068.x
  11. Hasegawa H, Uchiyama M. Antimetastatic efficacy of orally administered ginsenoside $Rb_1$ in dependence on intestinal bacterial hydrolyzing potential and significance of treatment with an active bacterial metabolite. Planta Med 1998;64:696-700. https://doi.org/10.1055/s-2006-957560
  12. Wakabayashi C, Murakami K, Hasegawa H, Murata J, Saiki I. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun 1998;246:725-30. https://doi.org/10.1006/bbrc.1998.8690
  13. Oh SH, Yin HQ, Lee BH. Role of the Fas/Fas ligand death receptor pathway in ginseng saponin metabolite-induced apoptosis in HepG2 cells. Arch Pharm Res 2004;27:402-6. https://doi.org/10.1007/BF02980081
  14. Quan LH, Piao JY, Min JW, Kim HB, Kim SR, Yang DU, Yang DC. Biotransformation of ginsenoside $Rb_1$ to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside $F_2$, and compound K by Leuconostoc mesenteroides DC102. J Ginseng Res 2011;35:344-51. https://doi.org/10.5142/jgr.2011.35.3.344
  15. Quan LH, Kim YJ, Li GH, Choi KT, Yang DC. Microbial transformation of ginsenoside $Rb_1$ to compound K by Lactobacillus paralimentarius. World J Microbiol Biotechnol 2013;29:1001-7. https://doi.org/10.1007/s11274-013-1260-1
  16. Shin KC, Seo MJ, Oh HJ, Oh DK. Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by ${\beta}$-glucosidase from Thermus thermophilus and its application to the production of ginsenoside $F_2$ from gypenoside XVII. Biotechnol Lett 2014;36:1287-93. https://doi.org/10.1007/s10529-014-1472-y
  17. Hu Y, Luan H, Hao D, Xiao H, Yang S, Yang L. Purification and characterization of a novel ginsenoside-hydrolyzing ${\beta}$-Dglucosidase from China white jade snail (Achatina fulica). Enzyme Microb Technol 2007;40:1358-66. https://doi.org/10.1016/j.enzmictec.2006.10.011
  18. Yan, Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P. Purification and properties of a novel ${\beta}$-glucosidase, hydrolyzing ginsenoside $Rb_1$ to CK, from Paecilomyces Bainier. J Microbiol Biotechnol 2008;18:1081-9.
  19. De Man JD, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Microbiol 1960;23:130-5.
  20. Casaregola S, Nguyen HV, Lapathitis G, Kotyk A, Gaillardin C. Analysis the constitution of beer yeast genome by PCR, sequencing and subtelomeric sequence hybridization. Int J Syst Evol Microbiol 2001;51(Pt 4):1607-18. https://doi.org/10.1099/00207713-51-4-1607
  21. Kwon KS, Lee J, Kang HG, Hah YC. Detection of ${\beta}$-glucosidase activity in polyacrylamide gels with esculin as substrate. Appl Environ Microbiol 1994;60:4584-6.
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731-9. https://doi.org/10.1093/molbev/msr121
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25.
  24. Cottrell M, Viljoen BC, Kock JL, Lategan PM. The long-chain fatty acid compositions of species representing the genera Saccharomyces, Schwanniomyces and Lipomyces. J Gen Microbiol 1986;132:2401-3.
  25. Van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 1995;59:304-22.
  26. Kim MK, Im WT, Ohta H, Lee M, Lee ST. Sphingopyxis granuli sp. nov., a ${\beta}$-glucosidase-producing bacterium in the family Sphingomanadaceae in ${\alpha}$-4 subclass of the Proteobacteria. J Microbiol 2005;43:152-7.
  27. Quan LH, Cheng LQ, Kim HB, Kim JH, Son NR, Kim SY, Jin HO, Yang DC. Bioconversion of ginsenoside Rd into compound K by Lactobacillus pentosus DC101 isolated from Kimchi. J Ginseng Res 2010;34:288-95. https://doi.org/10.5142/jgr.2010.34.4.288
  28. Doh ES, Chang JP, Lee KH, Seong NS. Ginsenoside change and antioxidation activity of fermented ginseng. Korean J Med Crop Sci 2010;18:255-65.