References
- Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 2004;21:377-97. https://doi.org/10.1016/j.fm.2003.10.005
- Mussatto SI, Dragone G, Guimaraes PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA. Technological trends, global market, and challenges of bioethanol production. Biotechnol Adv 2010;28:817-30. https://doi.org/10.1016/j.biotechadv.2010.07.001
- Singh A, Sharma P, Saran AK, Singh N, Bishnoi NR. Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renew Energy 2013;50:488-93. https://doi.org/10.1016/j.renene.2012.07.003
- Mathew AK, Crook M, Chaney K, Humphries AC. Comparison of entrapment and biofilm mode of immobilisation for bioethanol production from oilseed rape straw using Saccharomyces cerevisiae cells. Biomass Bioenergy 2013;52:1-7. https://doi.org/10.1016/j.biombioe.2013.02.028
- Bouallagui H, Touhami Y, Hanafi N, Ghariani A, Hamdi M. Performances comparison between three technologies for continuous ethanol production from molasses. Biomass Bioenergy 2013;48:25-32. https://doi.org/10.1016/j.biombioe.2012.10.018
- Yu J, Zhang X, Tan T. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J Biotechnol 2007;129:415-20. https://doi.org/10.1016/j.jbiotec.2007.01.039
- Liang L, Zhang YP, Zhang L, Zhu MJ, Liang SZ, Huang YN. Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses. J Ind Microbiol Biotechnol 2008;35:1605-13. https://doi.org/10.1007/s10295-008-0404-z
- Plessas S, Bekatorou A, Koutinas AA, Soupioni M, Banat IM, Marchant R. Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresour Technol 2007;98:860-5. https://doi.org/10.1016/j.biortech.2006.03.014
- Pacheco AM, Gondim DR, Goncalves LR. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Appl Biochem Biotechnol 2010;161:209-17. https://doi.org/10.1007/s12010-009-8781-y
- Branyik T, Silva DP, Vicente AA, Lehnert R, e Silva JB, Dostalek P, Teixeira JA. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J Ind Microbiol Biotechnol 2006;33:1010-8. https://doi.org/10.1007/s10295-006-0151-y
- Genisheva Z, Mussatto SI, Oliveira JM, Teixeira JA. Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production. Ind Crops Prod 2011;34:979-85. https://doi.org/10.1016/j.indcrop.2011.03.006
- Bardi EP, Koutinas AA. Immobilization of yeast on delignified cellulosic material for room temperature and lowtemperature wine making. J Agric Food Chem 1994;42:221-6. https://doi.org/10.1021/jf00037a040
- Lee SE, Lee CG, Kang DH, Lee HY, Jung KH. Preparation of corncob grits as a carrier for immobilizing yeast cells for ethanol production. J Microbiol Biotechnol 2012;22:1673-80. https://doi.org/10.4014/jmb.1202.02049
- Lee SE, Kim YO, Choi WY, Kang DH, Lee HY, Jung KH. Two-step process using the immobilized Saccharomyces cerevisiae and Pichia stipitis for ethanol production from the hydrolysate of Ulva pertusa Kjellman. J Microbiol Biotechnol 2013;23: 1434-44. https://doi.org/10.4014/jmb.1304.04014
- Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: an overview. Renew Energy 2012;37:19-27. https://doi.org/10.1016/j.renene.2011.06.045
- Sobhanardakani S, Parvizimosaed H, Olyaie E. Heavy metals removal from wastewaters using organic solid waste-rice husk. Environ Sci Pollut Res Int 2013;20:5265-71. https://doi.org/10.1007/s11356-013-1516-1
- Song ST, Saman N, Johari K, Mat H. Removal of Hg(II) from aqueous solution by adsorption using raw and chemically modified rice straw as novel adsorbents. Ind Eng Chem Res 2013;52;13092-101. https://doi.org/10.1021/ie400605a
- Baki MH, Shemirani F, Khani R. Potential of sawdust as a green and economical sorbent for simultaneous preconcentration of trace amounts of cadmium, cobalt, and lead from water, biological, food, and herbal samples. J Food Sci 2013;78:T797-804. https://doi.org/10.1111/1750-3841.12104
- Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption. Biotechnol Adv 2008;26:266-91. https://doi.org/10.1016/j.biotechadv.2008.02.002
- Chaplin MF, Kennedy JF. Carbohydrate analysis: a practical approach. Oxford: IRL Press; 1986.
- Lee SE, Lee JE, Shin GY, Choi WY, Kang DH, Lee HY, Jung KH. Development of practical and cost-effective medium for the bioethanol production from the seaweed hydrolysate in surface-aerated fermentor by repeated-batch operation. J Microbiol Biotechnol 2012;22:107-13. https://doi.org/10.4014/jmb.1106.06019
- Yeon JH, Lee SE, Choi WY, Kang DH, Lee HY, Jung KH. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol 2011;21:323-31.
- Vieira AM, Sa-Correia I, Novais JM, Cabral JM. Could the improvements in the alcoholic fermentation of high glucose concentrations by yeast immobilization be explained by media supplementation? Biotechnol Lett 1989;11:137-40. https://doi.org/10.1007/BF01192190
- Khare SK, Nakajima M. Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil. Food Chem 2000; 68:153-7. https://doi.org/10.1016/S0308-8146(99)00166-1