DOI QR코드

DOI QR Code

Control of Botrytis cinerea and Postharvest Quality of Cut Roses by Electron Beam Irradiation

전자빔 조사에 따른 잿빛곰팡이병원균 방제효과와 절화 장미의 수확 후 품질

  • Kwon, Song (Department of Plant Science, Seoul National University) ;
  • Choi, Gyung Ja (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Ki Sun (Department of Plant Science, Seoul National University) ;
  • Kwon, Hye Jin (Department of Floral and Plant Design, Cheonan Yonam College)
  • 권송 (서울대학교 식물생산과학부) ;
  • 최경자 (한국화학연구원 바이오화학연구센터) ;
  • 김기선 (서울대학교 식물생산과학부) ;
  • 권혜진 (천안연암대학 화훼디자인계열)
  • Received : 2014.02.08
  • Accepted : 2014.04.02
  • Published : 2014.09.30

Abstract

The present study was conducted to determine the effect of electron beam irradiation on control of Botrytis cinerea and postharvest quality of cut roses. Electron beam doses of 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 10, and 20 kGy were applied with a 10-MeV linear electron beam accelerator (EB Tech, Korea). Electron beams inhibited spore germination and mycelial growth of B. cinerea with increasing irradiation doses. Conidia of B. cinerea were more tolerant to irradiation than were mycelia: the effective irradiation doses for 50% inhibition ($ED_{50}$) of spore germination and mycelial growth were 2.02 kGy and 0.89 kGy, respectively. In addition, electron beam irradiation was more effective in reducing mycelial growth of B. cinerea at $10^{\circ}C$ than at $20^{\circ}C$. Analysis of in vivo antifungal activity revealed that elevated irradiation doses exhibited increased control efficacy for tomato gray mold. Flower longevity and fresh weight of cut roses decreased when the irradiation dose was increased. In addition, flower bud opening tended to be inhibited in a dose-dependent manner. Although 'Decoration', 'Il se Bronze', 'Queen Bee', and 'Revue' roses tolerated and maintained overall postharvest quality up to 0.4 kGy, 'Vivian' did not, demonstrating that the irradiation sensitivity of cut roses varies according to cultivar.

본 연구는 전자빔 조사에 따른 잿빛곰팡이병 방제효과와 절화 장미의 수확 후 품질을 알아보고자 수행하였다. 10MeV 전자가속기를 이용하여 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 10, 20kGy로 조사했을 때 전자빔 선량이 높아짐에 따라 Botrytis cinerea 포자 발아와 균사 생장은 억제되었다. 전자빔 조사가 B. cinerea 포자 발아와 균사 생장에 미치는 영향을 비교했을 때, 포자 발아를 50% 억제하는 선량은 2.02kGy, 균사 생장을 50% 억제하는 선량은 0.89kGy였으므로 포자가 균사에 비해 전자빔에 대한 저항성이 더 높았다. 전자빔 조사후 배양온도에 따른 B. cinerea 균사 생장을 비교한 결과 잿빛곰팡이병균에 대한 전자빔 효과는 배양온도가 낮아질수록 증가하였으며, 특히 $10^{\circ}C$에서 가장 높은 균사 생장 억제효과를 보였다. 토마토 유묘를 이용하여 전자빔의 in vivo 살균활성을 검정한 결과 전자빔 선량이 높아짐에 따라 방제효과도 증가하였다. 절화 장미는 전자빔 선량이 높아짐에 따라 절화수명 및 생체중의 감소, 개화 지연 등을 보였으며, 'Decoration', 'Il se Bronze', 'Queen Bee', 'Revue'는 0.4kGy이하에서 전반적인 절화품질이 유지되었지만 'Vivian'은 0.2kGy 이하에서만 절화품질이 유지되어 장미 품종에 따라 전자빔에 대한 감수성이 다르게 나타났다.

Keywords

References

  1. Animal and Plant Health Inspection Service (APHIS). 2002. Irradiation phytosanitary treatment of imported fruit and vegetables. Federal Register 67:65016-65029.
  2. Animal and Plant Health Inspection Service (APHIS). 2006. Treatments for fruits and vegetables. Federal Register 71:4451-4464.
  3. Barkai-Golan, R., R. Padova, I. Ross, M. Lapidot, H. Davidson, and A. Copel. 1993. Combined hot water and radiation treatments to control decay of tomato fruits. Sci. Hortic. 56:101-105. https://doi.org/10.1016/0304-4238(93)90011-E
  4. Bulger, M.A., M.A. Ellis, and L.V. Madden. 1987. Influence of temperature and wetness duration on infection of strawberry flowers by Botrytis cinerea and disease incidence of fruit originating from infected flowers. Phytopathology 77:1225-1230. https://doi.org/10.1094/Phyto-77-1225
  5. Chang, A.Y., R.J. Gladon, M.L. Gleason, S.K. Parker, N.H. Agnew, and D.G. Olson. 1997. Postharvest quality of cut roses following electron-beam irradiation. HortScience 32:698-701.
  6. Choi, G.J., K.S. Jang, Y.H. Choi, and J.C. Kim. 2009. Control efficacy of a new fungicide fludioxonil on lettuce gray mold according to several conditions. Res. Plant Dis. 15:217-221. https://doi.org/10.5423/RPD.2009.15.3.217
  7. Elad, Y. 1988. Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Protec. 7:361-366. https://doi.org/10.1016/0261-2194(88)90003-8
  8. Fan, X. and K.J.B. Sokorai. 2011. Effects of gamma irradiation, modified atmosphere packaging, and delay of irradiation on quality of fresh-cut lceberg lettuce. HortScience 46:273-277.
  9. Fiester, S.E., S.L. Helfinstine, J.C. Redfearn, R.M. Uribe, and C.J. Woolverton. 2012. Electron beam irradiation dose dependently damages the Bacillus spore coat and spore membrane. Int. J. Microbiol. 2012:1-9.
  10. Follett, P.A. 2008. Effect of irradiation on Mexican leafroller (Lepidoptera: Tortricidae) development and reproduction. J. Econ. Entomol. 101:710-715. https://doi.org/10.1093/jee/101.3.710
  11. Food and Agriculture Organization of the United Nations (FAO). 2003. Guidelines for the use of irradiation as a phytosanitary measure. International plant protection convention, international standards for phytosanitary measures (ISPM) No. 18. FAO, Rome.
  12. Gomes, C., P. Da Silva, E. Chimbombi, J. Kim, E. Castell-Perez, and R.G. Moreira. 2008. Electron-beam irradiation of fresh broccoli heads (Brassica oleracea L. italica). LWT-Food Sci. Technol. 41:1828-1833. https://doi.org/10.1016/j.lwt.2008.02.014
  13. Gryczka, U., M. Ptaszek, W. Migdal, and L.B. Orlikowski. 2010. Application of electron beam irradiation for inhibition of Fusarium oxysporum f. sp. dianthi activity. Nukleonika 55:359-362.
  14. Hammer, P.E. 1988. Postharvest control of Botrytis cinerea on cut roses with picro-cupric-ammonium formate. Plant Dis. 72:347-350. https://doi.org/10.1094/PD-72-0347
  15. Hammer, P.E., S.F. Yang, M.S. Reid, and J.J. Marois. 1990. Postharvest control of Botrytis cinerea infections on cut roses using fungistatic storage atmospheres. J. Amer. Soc. Hort. Sci. 115:102-107.
  16. Hasbullah, N.A., R.M. Taha, A. Saleh, and N. Mahmad. 2012. Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii. Hortic. Bras. 30:252-257. https://doi.org/10.1590/S0102-05362012000200012
  17. Hatton, T.T. and R.H. Cubbedge. 1979. Phytotoxicity of methyl bromide as a fumigant for Florida citrus fruit. Proc. Fla. State Hort. Soc. 92:167-169.
  18. Hayashi, T., O.K. Kikuchi, and T. Dohino. 1998. Electron beam disinfestation of cut flowers and their radiation tolerance. Radiat. Phys. Chem. 51:175-179.
  19. International Plant Protection Convention (IPPC). 2008. Replacement or reduction of the use of methyl bromide as a phytosanitary measure. IPPC Recommendation, CPM-3. Rome.
  20. Kang, T.J., H.Y. Jeon, C.Y. Yang, H.H. Kim, and M.R. Cho. 2007. Development of labor-saving pest management system for cut flower rose cultivation. Kor. J. Hort. Sci. Technol. 25:418-424.
  21. Korea Agricultural Trade Information, Korea Agro-Fisheries and Food Trade Corporation (KATI). 2010. Korea agricultural trade information. http://kati.net/kati.do
  22. Kikuchi, O.K. 2003. Gamma and electron-beam irradiation of cut flowers. Radiat. Phys. Chem. 66:77-79. https://doi.org/10.1016/S0969-806X(02)00264-5
  23. Kim, D.H. 2006. Principles of radiation sterilization of food materials. Food Ind. Nutr. 11:21-29.
  24. Koo, H.N., S.H. Yun, C. Yoon, and G.H. Kim. 2012. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess). Radiat. Phys. Chem. 81:86-92. https://doi.org/10.1016/j.radphyschem.2011.09.008
  25. Lahlali, R., M.N. Serrhini, D. Friel, M.H. Jijakli. 2007. Predictive modelling of temperature and water activity (solutes) on the in vitro radial growth of Botrytis cinerea Pers. Intl. J. Food Microbiol. 114:1-9. https://doi.org/10.1016/j.ijfoodmicro.2006.11.004
  26. Lee, H.S. and Y.C. Shin. 2008. Workers'exposure to airborne methyl bromide in the exporting/importing plants and products quarantine company. J. Kor. Soc. Occup. Environ. Hyg. 18:32-40.
  27. Migdal, W., L.B. Orlikowski, M. Ptaszek, and U. Gryczka. 2012. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates. Radiat. Phys. Chem. 81:1012-1016. https://doi.org/10.1016/j.radphyschem.2011.12.046
  28. Moon, S.R., B.K. Son, J.O. Yang, J.S. Woo, C. Yoon, and G.H. Kim. 2010. Effect of electron-beam irradiation on development and reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae. Kor. J. Appl. Entomol. 49:129-137. https://doi.org/10.5656/KSAE.2010.49.2.129
  29. Orlikowski, L.B., W. Migdal, M. Ptaszek, and U. Gryczka. 2011. Effectiveness of electron beam irradiation in the control of some soilborne pathogens. Nukleonika 56:357-362.
  30. Pasini, C., F. D´Aquila, P. Curir, and M.L. Gullino. 1997. Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Protec. 16:251-256. https://doi.org/10.1016/S0261-2194(96)00095-6
  31. Plant Protection Station, Ministry of Agriculture, Forestry and Fisheries of Japan (PPS). 2010. Plant quarantine statistics. http://www.maff.go.jp/pps/
  32. Reddy, S., J.A. Spencer, and S.E. Newman. 1992. Leaflet surfaces of blackspot-resistant and susceptible roses and their reactions to fungal invasion. HortScience 27:133-135.
  33. Sangwanangkul, P., P. Saradhuldhat, and R.E. Paull. 2008. Survey of tropical cut flower and foliage responses to irradiation. Postharvest Biol. Technol. 48:264-271. https://doi.org/10.1016/j.postharvbio.2007.12.002
  34. Sommer, N.F., R.J. Fortlage, P. M. Buckley, and E.C. Maxie. 1972. Comparative sensitivity to gamma radiation of conidia, mycelia, and sclerotia of Botrytis cinerea. Radiat. Bot. 12:99-103. https://doi.org/10.1016/S0033-7560(72)80074-7
  35. Tiryaki, O. 1990. Inhibition of Penicillium expansum, Botrytis cinerea, Rhizopus stolonifer, and Alternaria tenuissima, which were isolated from Ankara pears by gamma irradiation. J. Turkish Phytopathol. 19:133-140.
  36. United National Environment Programme (UNEP). 2012. Handbook for the Montreal protocol on substances that deplete the ozone layer. 9th ed. UNEP, Nairobi. p. 40.
  37. Van Den Oever, R., D. Roosels, and D. Lahaye. 1982. Actual hazard of methyl bromide fumigation in soil disinfection. Brit. J. Ind. Med. 39:140-144.
  38. Wani, A.M., P.R. Hussain, R.S. Meena, and M.A. Dar. 2008. Effect of gamma-irradiation and refrigerated storage on the improvement of quality and shelf life of pear (Pyrus communis L., Cv. Bartlett/William). Radiat. Phys. Chem. 77:983-989. https://doi.org/10.1016/j.radphyschem.2008.04.005
  39. Yang, M.S., C.C. Chyau, D.T. Horng, and J.S. Yang. 2002. Effects of irradiation on epidermis ultrastructure of fresh day-lily flowers. Radiat. Phys. Chem. 63:249-251. https://doi.org/10.1016/S0969-806X(01)00508-4

Cited by

  1. 소형 분화류의 포장재 및 포장용기에 대한 소비자의 기호도 조사 vol.23, pp.1, 2014, https://doi.org/10.20909/kopast.2017.23.1.47
  2. 잿빛곰팡이병원균 Botrytis cinerea 균주 종류별 장미 발병 정도의 차이 vol.25, pp.1, 2014, https://doi.org/10.5423/rpd.2019.25.1.16