DOI QR코드

DOI QR Code

Growth and Anthocyanins of Lettuce Grown under Red or Blue Light-emitting Diodes with Distinct Peak Wavelength

상이한 피크파장의 적색광 및 청색광 발광다이오드 조사에 따른 상추의 생장 및 안토시아닌

  • Lee, Jae Su (Department of Bioindustrial Precision Machinery Engineering, Graduate School, Chonbuk National University) ;
  • Kim, Yong Hyeon (Department of Bioindustrial Machinery Engineering, College of Agriculture & Life Sciences, Chonbuk National University)
  • 이재수 (전북대학교 대학원 생물산업정밀기계공학과) ;
  • 김용현 (전북대학교 농업생명과학대학 생물산업기계공학과)
  • Received : 2013.09.16
  • Accepted : 2014.02.05
  • Published : 2014.06.30

Abstract

Growth and anthocyanins of lettuce (Lactuca sativa L., 'Mid-season') grown under LED lamps with blue light in the range of 430-470 nm or with red light in the range of 630-670 nm were analyzed in this study. Cool-white fluorescent light was used a s the control. P hotosynthetic photon flux, p hotoperiod, air temperature, relative humidity, and $CO_2$ concentration in a closed plant production system were $201{\pm}2\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 16/8 hours (day/night), $22/18^{\circ}C$, 70%, and $400{\mu}mol{\cdot}mol^{-1}$, respectively. At 21 days after light quality treatment, growth characteristics and anthocyanins content of lettuce as affected by the peak wavelength of blue or red LED were significantly different. Among peak wavelengths treated in this stusy, R1 treatment (peak wavelength 634 nm) and R6 treatment (peak wavelength 659 nm) were effective for increasing leaf width, leaf area, shoot fresh weight, and photosynthetic rate of lettuce. B5 treatment (peak wavelength 450 nm) and B4 treatment (peak wavelength 446 nm) increased the anthocyanins concentration and chlorophyll content in lettuce leaves, respectively. Anthocyanins in lettuce leaves increased linearly with decreasing hue value of leaf color and with increasing SPAD value of lettuce leaves. From these results, it was concluded that the red LED with peak wavelengths of 634 nm and 659 nm and the blue LED with peak wavelengths of 450 nm can be used as potential light spectra for increasing the yield and anthocyanins accumulation of leafy vegetable.

430-470nm의 청색광 영역과 630-670nm의 적색광 영역을 5nm 간격으로 세분화한 LED를 인공광원으로 사용하고, 냉백색형광등을 대조구로 사용한 가운데 적치마상추(Lactuca sativa L. '중생종', 흥농씨앗)의 생장 및 안토시아닌 함량에 미치는 적색광 또는 청색광 LED의 피크파장에 따른 광질조사 효과를 분석하였다. 페쇄형 시스템 내에서 생장된 상추의 재배조건은 광주기 16/8h, 기온 $22/18^{\circ}C$, 습도 70%, $CO_2$ 농도 $400{\mu}mol{\cdot}mol^{-1}$로 설정하였고, 베드 면에서의 PPF를 $201{\pm}2\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 조절하였다. 정식 후 21일째에 측정된 상추의 생장 특성과 안토시아닌 함량은 청색광 또는 적색광 LED의 피크파장에 따라 유의차가 다르게 나타났다. 본 연구에서 처리된 LED의 피크파장 가운데 R1 처리구(피크파장 634nm)와 R6 처리구(피크파장 659nm)가 엽폭, 엽면적, 지상부 생체중 및 광합성속도의 증가에 효과적이었다. 한편 안토시아닌의 축적에 B5 처리구(피크파장 450nm)가 효과적이었다. 상추 잎의 안토시아닌 함량은 엽색의 hue 값이 작아지거나, 또는 SPAD 값이 커질수록 직선적인 관계를 이루면서 증가하였다. 결론적으로 본 연구에서 얻어진 피크파장 634nm와 659nm의 적색광, 450nm의 청색광은 엽채류의 생산량 증대와 안토시아닌 함량의 증진에 필요한 광질로서 활용될 것이다.

Keywords

References

  1. An, C.G., Y.H. Hwang, J.U. An, H.S. Yoon, Y.H. Chang, G.M. Shon, and S.J. Hwang. 2011. Effect of LEDs (light emitting diodes) irradiation on growth of paprika (Capsicum annuum 'Cupra'). J. Bio-Environ. Con. 20:253-257.
  2. Barta, D.J., T.W. Tibbitts, R.J. Bula, and R.C. Morrow. 1992. Evaluation of light emitting diode characteristics for space-based plant irradiation source. Adv. Space Res. 12:141-149.
  3. Botto, J.F., R.A. Sanchez, G.C. Whitelam, and J.J. Casal. 1996. Phytochrome a mediates the promotion of seed germination by very low fluences of light and canopy shade light in arabidopsis. Plant Physiol. 110:439-444.
  4. Brown, C.S., A.C. Schuerger, and J.C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120:808-813.
  5. Cormier, F., H. Crevier, and C. Do. 1990. Effects of sucrose concentration on the accumulation of anthocyanins ingrape (Vitis vinifera L.) cell suspension. Can. J. Bot. 68:1822-1825. https://doi.org/10.1139/b90-236
  6. Eun, J.S., Y.S. Kim, and Y.H. Kim. 2000. Effects of light emitting diodes on growth and morphogenesis of in vitro seedlings in Platycodon gradiflorum. Kor. J. Plant Tissue Culture 27:71-75.
  7. Fuleki, T. and F.J. Francis. 1968. Quantitative methods for anthocyanins. 1. Extration and determination of total anthocyanins in cranberries. J. Food Sci. 33:72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  8. Hirner, A.A., S. Veit, and H.U. Seitz. 2001. Regulation of anthocyanin biosynthesis in UV-A-irradiated cell cultures of carrot and in organs of intact carrot plants. Plant Sci. 161: 315-322. https://doi.org/10.1016/S0168-9452(01)00408-3
  9. Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814.
  10. Kim, Y.H. 1999. Plant growth and morphogenesis control in transplant production system using light-emitting diodes (LEDs) as artificial light source-Spectral characteristics and light intensity of LEDs. J. Kor. Soc. Agric. Mach. 24:115-122.
  11. Kim, Y.H. and H.S. Park. 2003. Graft-taking characteristics of watermelon grafted seedlings as affected by blue, red and far-red light-emitting diodes. J. Kor. Soc. Agric. Mach. 28:151-156. https://doi.org/10.5307/JBE.2003.28.2.151
  12. Kong, J.M., L.S. Chia, N.K. Goh, T.F. Chia, and R. Brouillard. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64:923-933. https://doi.org/10.1016/S0031-9422(03)00438-2
  13. Konczak-Islam, I., M. Yoshinaga, M. Nakatani, N. Terahara, and O. Yamakawa. 2000. Establishment and characteristics of an anthocyanin-producing cell line from sweetpotato storage root. Plant Cell Rep. 19:472-477. https://doi.org/10.1007/s002990050758
  14. Lee, J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, and Y.C. Um. 2010. Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J. Bio-Enviro. Con. 19:351-359.
  15. Lee, J.S., H.I. Lee, and Y.H. Kim. 2012. Seedling quality and early yield after transplanting of paprika nursed under lightemitting diodes, fluorescent lamps and natural light. J. Bio- Environ. Con. 21:220-227.
  16. Lee, J.S. and Y.H. Kim. 2012. Measurement system of photosynthetic photon flux distribution and illumination efficiency of LED lamps for plant growth. J. Biosystems Eng. 37:314-318. https://doi.org/10.5307/JBE.2012.37.5.314
  17. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67:59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  18. Lin, C. 2002. Blue light receptors and signal transduction. Plant Cell S207-S225.
  19. Mancinelli, A.L., F. Rossi, and A. Motoni. 1991. Cryptochrome, phytochrome, and anthocyanin production. Plant Physiol. 96:1079-1085. https://doi.org/10.1104/pp.96.4.1079
  20. Meyer, J.E., M.F. Pepin, and M.A.L. Smith. 2002. Anthocyanin production from Vaccinium pahalae: limitations of the physical microenvironment. J. Biotechnol. 93:45-57. https://doi.org/10.1016/S0168-1656(01)00378-9
  21. Ninu, L., M. Ahmad, C. Miarelli, A.R. Cashmore, and G. Giuliano. 1999. Cryptochrome 1 controls tomato development in response to blue light. Plant J. 18:551-556. https://doi.org/10.1046/j.1365-313X.1999.00466.x
  22. Oren-Shamir, M. 2009. Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Sci. 177:310-316. https://doi.org/10.1016/j.plantsci.2009.06.015
  23. Park, J.H., J.S. Lee, D.E. Kim, and Y.H. Kim. 2011. Analysis of optimum water cooling conditions and heat exchange of LED lamps for plant growth. J. Biosystems Eng. 36:334-341. https://doi.org/10.5307/JBE.2011.36.5.334
  24. Park, J.H., J.S. Lee, and Y.H. Kim. 2012. Development of a lighting control system for improving light quality of discharge lamps. Proc. Kor. Soc. Agric. Mach. 17(1):351-354.
  25. Son, K.H., J.H. Park, D.I. Kim, and M.M. Oh. 2012. Leaf shape, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Kor. J. Hort. Sci. Technol. 30:664-672. https://doi.org/10.7235/hort.2012.12063
  26. Smith, C.J. and J.R. Gallon. 2001. Living in the real world: how plants perceive their environment. New Phytol. 151:1-6. https://doi.org/10.1046/j.1469-8137.2001.00176.x
  27. Sponga, F., G.F. Deitzer, and A.L. Mancinelli. 1986. Cryptochrome, phytochrome, and the photoregulation of anthocyanin production under blue light. Plant Physiol. 82:952-955. https://doi.org/10.1104/pp.82.4.952
  28. Tennessen, D.J., R.J. Bula, and T.D. Sharkey. 1995. Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth. Res. 44:261-269. https://doi.org/10.1007/BF00048599
  29. Wang, Y., B. Zhou, M. Sun, Y. Li, and S. Kawabata. 2012. UV-A light induces anthocyanin biosynthesis in a manner distinct from synergistic blue + UV-B light and UV-A/blue light responses in different parts of the hypocotyls in turnip seedlings. Plant Cell Physiol. 53:1470-1480. https://doi.org/10.1093/pcp/pcs088
  30. Xu, H., Q. Xu, F. Li, Y. Feng, F. Qin, and W. Fang. 2012. Applications of xerophytophysiology in plant production-LED blue light as a stimulus improved the tomato crop. Sci. Hortic. 148:190-196. https://doi.org/10.1016/j.scienta.2012.06.044
  31. Yang, Y., J. Shah, and D.F. Klessig. 1997. Signal perception and transduction in plant defense responses. Genes Dev. 11:1621-1639. https://doi.org/10.1101/gad.11.13.1621
  32. Yorio, N.C., G.D. Goins, H.R. Kagie, R.M. Wheeler, and J.C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light emitting diodes (LEDs) with blue light supplementation.HortScience 36:380-383.

Cited by

  1. Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs) vol.57, pp.6, 2016, https://doi.org/10.1007/s13580-016-0093-x
  2. Spectral dependence of electrical energy-based photosynthetic efficiency at single leaf and canopy levels in green- and red-leaf lettuces vol.58, pp.2, 2017, https://doi.org/10.1007/s13580-017-0154-9
  3. Supplemental irradiation with far-red light-emitting diodes improves growth and phenolic contents in Crepidiastrum denticulatum in a plant factory with artificial lighting vol.58, pp.4, 2017, https://doi.org/10.1007/s13580-017-0331-x
  4. Growth and bioactive compounds as affected by irradiation with various spectrum of light-emitting diode lights in dropwort vol.58, pp.5, 2017, https://doi.org/10.1007/s13580-017-0354-3
  5. Analysis of Antioxidant Content and Growth of Agastache rugosa as Affected by LED Light Qualities vol.27, pp.3, 2018, https://doi.org/10.12791/KSBEC.2018.27.3.260
  6. Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes vol.59, pp.4, 2018, https://doi.org/10.1007/s13580-018-0058-3
  7. Optimization of temperature and light, and cultivar selection for the production of high-quality head lettuce in a closed-type plant factory pp.2211-3460, 2019, https://doi.org/10.1007/s13580-018-0118-8
  8. 밀폐형 식물생산시스템에서 광질과 광주기에 따른 씀바귀의 생육 vol.34, pp.1, 2014, https://doi.org/10.12972/kjhst.20160005
  9. 상이한 광질 및 광주기 하에서 UV-A LED 부가 조사가 상추의 생장, 안토시아닌 및 아스코르빈산 함량에 미치는 영향 vol.34, pp.4, 2014, https://doi.org/10.12972/kjhst.20160061
  10. 밀폐형 식물 생산 시스템에서 형광등 종류에 따른 시금치의 생육 및 기능성물질 함량 vol.26, pp.4, 2014, https://doi.org/10.12791/ksbec.2017.26.4.386
  11. Combined Effect of Salinity and LED Lights on the Yield and Quality of Purslane (Portulaca oleracea L.) Microgreens vol.7, pp.7, 2014, https://doi.org/10.3390/horticulturae7070180
  12. The Impact of Light Spectrum and Intensity on the Growth, Physiology, and Antioxidant Activity of Lettuce (Lactuca sativa L.) vol.10, pp.10, 2014, https://doi.org/10.3390/plants10102162